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8 Bisection Method, Uniform Continuity

Example 8.1 (Exercise 3.24)
Let S ⊂ R, S ̸= ∅, S not sequentially compact.

Note that S sequentially compact ⇐⇒ S is closed and bounded.

So, if S is not sequentially compact, then S is either unbounded, or not closed.

Note that the reals R is closed.

Every sequence in N that converges is eventually a repeating sequence, so N is closed.
Suppose the sequence {an}∞n=1 ⊆ N with an → n0 in N. Eventually, an = n0 for all large n.

Note 8.2
Recall that the intermediate value theorem states that for f : [a, b] → R is continuous on [a, b], then for a c
between f(a), f(b), there is an x0 in (a, b) with f(x0) = c.

We often use the IVT to show that a function has a zero (f(x0) = 0 for some x0 ∈ D)

Example 8.3
f(x) = x3 − 2x2 + 3x− 7. Show that f has a zero.

Solution: f(0) < 0, f(1) < 0, f(2) < 0, f(3) > 0. f is continuous because it is a polynomial, and so
by the IVT, there is an x0 in (2, 3) with f(x0) = 0.

8.1 Bisection Method
Assume that f is continuous on [a, b], and f(a) < 0 < f(b) (or f(b) < 0 < f(a))

Process: we let c1 = a+b
2 , which is the midpoint of [a, b].

Thus, we have 3 cases:
If f(c1) = 0, then we are done.
If f(c1) < 0, then we let c2 = c1+b

2 .
If f(c1) > 0, then we let c2 = a+c1

2 .

And we keep repeating this process for cn.

We keep cutting our search space in half in each step.

Example 8.4
f(x) = x3 − 2x2 + 3x− 7. Find c3 < 1

8 from zero of f .

Solution: f(2) < 0, f(3) > 0, so c1 = 2.5.
f(2.5) > 0, so we take c2 = 2.25.
f(2.25) > 0, so we take c3 = 2.125.

8.2 Uniform Continuity

Definition 8.5
f : D → R is uniformly continuous on D if for any {un}∞n=1, {vn}∞n=1 sequences in D with |un− vn| → 0,
then |f(un)− f(vn)| → 0.
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Note 8.6
If f is uniformly continuous, then f is continuous.

Proof. Let x0 be an arbitrary number in the domain of f .
Let {un}∞n=1, {vn}∞n=1 ⊆ D and with |un − vn| → 0 and vn = x0 for all n. a

Then, |un − x0| → 0 and because f is uniformly continuous, we have that |f(un) − f(x0)| → 0, so f is
continuous at x0.

Example 8.7
Let f(x) = x for all real x, and let un = n, vn = n+ 1

n for n ≥ 1.

Then |un − vn| = |n− (n+ 1
n )| =

1
n → 0, and |f(un)− f(vn)| → 0.

Theorem 8.8 (Theorem 3.17 **)
Let f : [a, b] → R be continuous. Then f is uniformly continuous on [a, b].

Proof. By contradiction.
Assume that f is not uniformly continuous, so there is ϵ > 0 and sequences {un}∞n=1 and {vn}∞n=1 ⊆ [a, b] with
|un − vn| → 0, but |f(un)− f(vn)| ≥ ϵ for n ≥ 1.

Theorem 2.33 implies that there is a subsequence (unk
)∞k=1 converging to some x∗ in [a, b].

Also, |un − vn| → 0 implies that {vnk
}∞k=1 also converges to x∗.

Because f is continuous on [a, b], we have that f(unk
) → f(x∗), and f(vnk

) → f(x∗). So, |f(unk
)− f(vnk

)| →
0.

Example 8.9
h(x) = 1

x , 0 < x < 2. Then h is not uniformly continuous.

Solution: Let un = 1
n2 , vn = 1

n for n ≥ 1. Then, |un − vn| = | 1
n2 − 1

n | → 0.
But, |h(un)− h(vn)| = |n2 − n| → ∞.

Note 8.10
f being uniformly continuous means that the slope of the graph of f can be "too" steep.

Example 8.11
Let k(x) = sin 1

x for 0 < x < 1. Then h is not uniformly continuous.

Solution: Let un = 1
2nπ , vn = 1

2nπ+ pi
2

. Here, |un − vn| → 0|. But, |h(un) − h(vn)| = | sin(2nπ) −

sin(2nπ + pi
2 )| = |0− 1| = 1 for all n.

Note 8.12
f being uniformly continuous also means that it can’t "wobble" too much.

2


	Bisection Method, Uniform Continuity
	Bisection Method
	Uniform Continuity


