8 Bisection Method, Uniform Continuity

Example 8.1 (Exercise 3.24)

Let $S \subset R, S \neq \emptyset, S$ not sequentially compact.

Note that S sequentially compact \iff S is closed and bounded.

So, if S is not sequentially compact, then S is either unbounded, or not closed.

Note that the reals $\mathbb R$ is closed.

Every sequence in \mathbb{N} that converges is eventually a repeating sequence, so \mathbb{N} is closed. Suppose the sequence $\{a_n\}_{n=1}^{\infty} \subseteq \mathbb{N}$ with $a_n \to n_0$ in \mathbb{N} . Eventually, $a_n = n_0$ for all large n.

Note 8.2

Recall that the intermediate value theorem states that for $f : [a, b] \to \mathbb{R}$ is continuous on [a, b], then for a c between f(a), f(b), there is an x_0 in (a, b) with $f(x_0) = c$.

We often use the IVT to show that a function has a zero $(f(x_0) = 0$ for some $x_0 \in D)$

Example 8.3

 $f(x) = x^3 - 2x^2 + 3x - 7$. Show that f has a zero.

Solution: f(0) < 0, f(1) < 0, f(2) < 0, f(3) > 0. f is continuous because it is a polynomial, and so by the IVT, there is an x_0 in (2,3) with $f(x_0) = 0$.

8.1 Bisection Method

Assume that f is continuous on [a, b], and f(a) < 0 < f(b) (or f(b) < 0 < f(a))

Process: we let $c_1 = \frac{a+b}{2}$, which is the midpoint of [a, b]. Thus, we have 3 cases: If $f(c_1) = 0$, then we are done. If $f(c_1) < 0$, then we let $c_2 = \frac{c_1+b}{2}$. If $f(c_1) > 0$, then we let $c_2 = \frac{a+c_1}{2}$.

And we keep repeating this process for c_n .

We keep cutting our search space in half in each step.

Example 8.4 $f(x) = x^3 - 2x^2 + 3x - 7$. Find $c_3 < \frac{1}{8}$ from zero of f. <u>Solution</u>: f(2) < 0, f(3) > 0, so $c_1 = 2.5$. f(2.5) > 0, so we take $c_2 = 2.25$. f(2.25) > 0, so we take $c_3 = 2.125$.

8.2 Uniform Continuity

Definition 8.5

 $f: D \to \mathbb{R}$ is **uniformly continuous** on D if for any $\{u_n\}_{n=1}^{\infty}, \{v_n\}_{n=1}^{\infty}$ sequences in D with $|u_n - v_n| \to 0$, then $|f(u_n) - f(v_n)| \to 0$.

Note 8.6

If f is uniformly continuous, then f is continuous.

Proof. Let x_0 be an arbitrary number in the domain of f. Let $\{u_n\}_{n=1}^{\infty}$, $\{v_n\}_{n=1}^{\infty} \subseteq D$ and with $|u_n - v_n| \to 0$ and $v_n = x_0$ for all n. a

Then, $|u_n - x_0| \to 0$ and because f is uniformly continuous, we have that $|f(u_n) - f(x_0)| \to 0$, so f is continuous at x_0 .

Example 8.7 Let f(x) = x for all real x, and let $u_n = n$, $v_n = n + \frac{1}{n}$ for $n \ge 1$.

Then $|u_n - v_n| = |n - (n + \frac{1}{n})| = \frac{1}{n} \to 0$, and $|f(u_n) - f(v_n)| \to 0$.

Theorem 8.8 (Theorem 3.17 **) Let $f : [a, b] \to \mathbb{R}$ be continuous. Then f is uniformly continuous on [a, b].

Proof. By contradiction.

Assume that f is not uniformly continuous, so there is $\epsilon > 0$ and sequences $\{u_n\}_{n=1}^{\infty}$ and $\{v_n\}_{n=1}^{\infty} \subseteq [a, b]$ with $|u_n - v_n| \to 0$, but $|f(u_n) - f(v_n)| \ge \epsilon$ for $n \ge 1$.

Theorem 2.33 implies that there is a subsequence $(u_{n_k})_{k=1}^{\infty}$ converging to some x^* in [a, b].

Also, $|u_n - v_n| \to 0$ implies that $\{v_{n_k}\}_{k=1}^{\infty}$ also converges to x^* .

Because f is continuous on [a, b], we have that $f(u_{n_k}) \to f(x^*)$, and $f(v_{n_k}) \to f(x^*)$. So, $|f(u_{n_k}) - f(v_{n_k})| \to 0$.

Example 8.9 $h(x) = \frac{1}{x}, 0 < x < 2$. Then *h* is not uniformly continuous.

<u>Solution</u>: Let $u_n = \frac{1}{n^2}$, $v_n = \frac{1}{n}$ for $n \ge 1$. Then, $|u_n - v_n| = |\frac{1}{n^2} - \frac{1}{n}| \to 0$. But, $|h(u_n) - h(v_n)| = |n^2 - n| \to \infty$.

Note 8.10

f being uniformly continuous means that the slope of the graph of f can be "too" steep.

Example 8.11

Let $k(x) = \sin \frac{1}{x}$ for 0 < x < 1. Then h is not uniformly continuous.

<u>Solution</u>: Let $u_n = \frac{1}{2n\pi}$, $v_n = \frac{1}{2n\pi + \frac{p_i}{2}}$. Here, $|u_n - v_n| \to 0|$. But, $|h(u_n) - h(v_n)| = |\sin(2n\pi) - \sin(2n\pi + \frac{p_i}{2})| = |0 - 1| = 1$ for all n.

Note 8.12

f being uniformly continuous also means that it can't "wobble" too much.