8 Bisection Method, Uniform Continuity

Example 8.1 (Exercise 3.24)
Let $S \subset R, S \neq \varnothing, S$ not sequentially compact.
Note that S sequentially compact $\Longleftrightarrow S$ is closed and bounded.
So, if S is not sequentially compact, then S is either unbounded, or not closed.
Note that the reals \mathbb{R} is closed.
Every sequence in \mathbb{N} that converges is eventually a repeating sequence, so \mathbb{N} is closed.
Suppose the sequence $\left\{a_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{N}$ with $a_{n} \rightarrow n_{0}$ in \mathbb{N}. Eventually, $a_{n}=n_{0}$ for all large n.

Note 8.2

Recall that the intermediate value theorem states that for $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$, then for a c between $f(a), f(b)$, there is an x_{0} in (a, b) with $f\left(x_{0}\right)=c$.

We often use the IVT to show that a function has a zero $\left(f\left(x_{0}\right)=0\right.$ for some $\left.x_{0} \in D\right)$

Example 8.3

$f(x)=x^{3}-2 x^{2}+3 x-7$. Show that f has a zero.
Solution: $f(0)<0, f(1)<0, f(2)<0, f(3)>0 . f$ is continuous because it is a polynomial, and so by the IVT, there is an x_{0} in $(2,3)$ with $f\left(x_{0}\right)=0$.

8.1 Bisection Method

Assume that f is continuous on $[a, b]$, and $f(a)<0<f(b)$ (or $f(b)<0<f(a))$
Process: we let $c_{1}=\frac{a+b}{2}$, which is the midpoint of $[a, b]$.
Thus, we have 3 cases:
If $f\left(c_{1}\right)=0$, then we are done.
If $f\left(c_{1}\right)<0$, then we let $c_{2}=\frac{c_{1}+b}{2}$.
If $f\left(c_{1}\right)>0$, then we let $c_{2}=\frac{a+c_{1}}{2}$.
And we keep repeating this process for c_{n}.
We keep cutting our search space in half in each step.

Example 8.4

$f(x)=x^{3}-2 x^{2}+3 x-7$. Find $c_{3}<\frac{1}{8}$ from zero of f.
Solution: $f(2)<0, f(3)>0$, so $c_{1}=2.5$.
$f(2.5)>0$, so we take $c_{2}=2.25$.
$f(2.25)>0$, so we take $c_{3}=2.125$.

8.2 Uniform Continuity

Definition 8.5

$f: D \rightarrow \mathbb{R}$ is uniformly continuous on D if for any $\left\{u_{n}\right\}_{n=1}^{\infty},\left\{v_{n}\right\}_{n=1}^{\infty}$ sequences in D with $\left|u_{n}-v_{n}\right| \rightarrow 0$, then $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right| \rightarrow 0$.

Note 8.6
If f is uniformly continuous, then f is continuous.

Proof. Let x_{0} be an arbitrary number in the domain of f.
Let $\left\{u_{n}\right\}_{n=1}^{\infty},\left\{v_{n}\right\}_{n=1}^{\infty} \subseteq D$ and with $\left|u_{n}-v_{n}\right| \rightarrow 0$ and $v_{n}=x_{0}$ for all n. a
Then, $\left|u_{n}-x_{0}\right| \rightarrow 0$ and because f is uniformly continuous, we have that $\left|f\left(u_{n}\right)-f\left(x_{0}\right)\right| \rightarrow 0$, so f is continuous at x_{0}.

Example 8.7

Let $f(x)=x$ for all real x, and let $u_{n}=n, v_{n}=n+\frac{1}{n}$ for $n \geq 1$.
Then $\left|u_{n}-v_{n}\right|=\left|n-\left(n+\frac{1}{n}\right)\right|=\frac{1}{n} \rightarrow 0$, and $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right| \rightarrow 0$.

Theorem 8.8 (Theorem $3.17^{* *}$)
Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then f is uniformly continuous on $[a, b]$.

Proof. By contradiction.
Assume that f is not uniformly continuous, so there is $\epsilon>0$ and sequences $\left\{u_{n}\right\}_{n=1}^{\infty}$ and $\left\{v_{n}\right\}_{n=1}^{\infty} \subseteq[a, b]$ with $\left|u_{n}-v_{n}\right| \rightarrow 0$, but $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right| \geq \epsilon$ for $n \geq 1$.

Theorem 2.33 implies that there is a subsequence $\left(u_{n_{k}}\right)_{k=1}^{\infty}$ converging to some x^{*} in $[a, b]$.
Also, $\left|u_{n}-v_{n}\right| \rightarrow 0$ implies that $\left\{v_{n_{k}}\right\}_{k=1}^{\infty}$ also converges to x^{*}.
Because f is continuous on $[a, b]$, we have that $f\left(u_{n_{k}}\right) \rightarrow f\left(x^{*}\right)$, and $f\left(v_{n_{k}}\right) \rightarrow f\left(x^{*}\right)$. So, $\left|f\left(u_{n_{k}}\right)-f\left(v_{n_{k}}\right)\right| \rightarrow$ 0.

Example 8.9

$h(x)=\frac{1}{x}, 0<x<2$. Then h is not uniformly continuous.
Solution: Let $u_{n}=\frac{1}{n^{2}}, v_{n}=\frac{1}{n}$ for $n \geq 1$. Then, $\left|u_{n}-v_{n}\right|=\left|\frac{1}{n^{2}}-\frac{1}{n}\right| \rightarrow 0$.
But, $\left|h\left(u_{n}\right)-h\left(v_{n}\right)\right|=\left|n^{2}-n\right| \rightarrow \infty$.

Note 8.10
f being uniformly continuous means that the slope of the graph of f can be "too" steep.

Example 8.11

Let $k(x)=\sin \frac{1}{x}$ for $0<x<1$. Then h is not uniformly continuous.
Solution: Let $u_{n}=\frac{1}{2 n \pi}, v_{n}=\frac{1}{2 n \pi+\frac{p i}{2}}$. Here, $\left|u_{n}-v_{n}\right| \rightarrow 0 \mid$. But, $\left|h\left(u_{n}\right)-h\left(v_{n}\right)\right|=\mid \sin (2 n \pi)-$ $\sin \left(2 n \pi+\frac{p i}{2}\right)|=|0-1|=1$ for all n.

Note 8.12

f being uniformly continuous also means that it can't "wobble" too much.

