7 Continuous Functions, Closed Domain Functions

7.1 Continuous Functions

Example 7.1 (Problem 3.1.1d)

True/False: Every function $f: \mathbb{N} \rightarrow \mathbb{R}$ is continuous.
Solution: Let $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{N}$, and let $x_{n} \rightarrow n_{0}\left(x_{n}\right.$ converges to $\left.n_{0}\right)$ where n_{0} is an arbitrary number in \mathbb{N}.
Then there is some $n^{*} \in \mathbb{N}$ so that $n \geq n^{*} \Longrightarrow f\left(x_{n}\right)=f\left(n_{0}\right)$.

Definition 7.2

A function $f: D \rightarrow R$ has $f\left(x_{0}\right)$ as a maximum value if $x_{0} \in D$ and $f(x) \leq f\left(x_{0}\right)$ for all x in D.
A function $f: D \rightarrow R$ has $f\left(z_{0}\right)$ as a minimum value if $z_{0} \in D$ and $f(x) \geq f\left(z_{0}\right)$ for all x in D.

Note 7.3

There can only be 0 or 1 maximum values, and only 0 or 1 minimum values.

Definition 7.4

If $f\left(x_{0}\right)=$ maximum value, then x_{0} is a maximizer. If $f\left(z_{0}\right)=$ minimum value, then z_{0} is a minimizer.

Definition 7.5
An extreme value of f is either a maximum value or a minimum value.

Example 7.6

$f(x)=\sin x \Longrightarrow f\left(\frac{\pi}{2}+2 n \pi\right)=1=$ maximum value, and $f\left(\frac{3 \pi}{2}+2 n \pi\right)=-1=$ minimum value for any integer n.
Maximum value of $\sin x$ is 1 , minimum value of $\sin x$ is -1 .
The maximizers are $\frac{\pi}{2}+2 n \pi$ where n is an integer, and the minimizers are $\frac{3 \pi}{2}+2 n \pi$ where n is an integer.

7.2 Closed Domain Functions

Lemma 7.7 (Lemma 3.10)

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then it is bounded above.

Proof. by contradiction.
Assume f is not bounded above. Then, there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq[a, b]$ with $f\left(x_{n}\right)>n$ for all $n \in \mathbb{N}$.
Since $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq[a, b]$ is bounded, then by Thm 2.32, there is a convergent subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ converging to some x^{*} in $[a, b]$.

We have that $f\left(x_{n_{k}}\right) \rightarrow \infty$, but since f is continuous, we also have that $x_{n_{k}} \rightarrow x^{*} \Longrightarrow f\left(x_{n_{k}}\right) \rightarrow f\left(x^{*}\right)$. Thus we have a contradiction.

Similarly, $f:[a, b] \rightarrow \mathbb{R}$ being continuous implies that f is bounded below, so if f is continuous on a closed interval, then f is bounded.

Theorem 7.8 (Extreme Value Theorem ${ }^{* * *}$ - Thm 3.9)
If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f has a maximum value and a minimum value.

Proof. By Lemma 3.10, f is bounded. So let $M=\sup \{f(x): x \in[a, b]\}$.
Then there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq[a, b]$ with $f\left(x_{n}\right) \rightarrow M$. Then $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq[a, b]$ is bounded, so it has a subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ converging to some x^{*} in $[a, b]$.

So, $f\left(x^{*}\right)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)$ because f is continuous, and $\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=M$. So, f has a maximum value (namely $f\left(x^{*}\right)=M$).

Similarly f has a minimum value.

Example 7.9

$g(x)=3 \sin (2 x)$ for $0 \leq x \leq 2 \pi$. Find the maximum value, minimum value, maximizers, and minimizers.

Solution:

Maximum value is $3=3 \sin \left(2 \cdot \frac{\pi}{4}\right)=3 \sin \left(2 \cdot \frac{5 \pi}{4}\right)$. So the maximizers are $\frac{\pi}{4}$ and $\frac{5 \pi}{4}$.
Minimum value is $-3=3 \sin \left(2 \cdot \frac{3 \pi}{4} 3 \sin \left(2 \cdot \frac{7 \pi}{4}\right.\right.$. So the minimizers are $\frac{3 \pi}{4}$ and $\frac{7 \pi}{4}$.

Example 7.10

Let $h(x)=2 x^{3}-3 x^{2}-12 x$ for $-2 \leq x \leq 3$.
What is the maximum and minimum value?
We need chapter 4 to answer this question.

Theorem 7.11 (Intermediate Value Theorem *** - Thm 3.11)

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous, and let c be between $f(a)$ and $f(b)$. Then there is an $x_{0} \in(a, b)$ with $f\left(x_{0}\right)=c$.

Proof. Assume $f(a)<c<f(b)$, and let $S=\{x \in(a, b): f(x)<c\}$.
Define $x_{0}=\sup S$ (a supremum exists because S is bounded). Note that $a<x_{0}<b$.
Suppose that $f\left(x_{0}\right)<c$. Then, there would be an interval $\left(x_{0}, x_{0}+\delta\right)$ so that $x \in\left(x_{0}, x_{0}+\delta\right)$ implies that $f(x)<c$. But then $x_{0} \neq \sup S$, which is a contradiction.

Similarly, suppose that $f\left(x_{0}\right)>c$. Then, there would be an interval $\left(x_{0}-\delta, x_{0}\right)$ so that $x \in\left(x_{0}-\delta, x_{0}\right)$ implies that $f(x)>c$. So $x_{0} \neq \sup S$.

So, $f\left(x_{0}\right)=c$.

Corollary 7.12
If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then either either (the range of f) $\supseteq[f(a), f(b)]$, or (the range of f) $\supseteq[f(b), f(a)]$, and the range of f is a closed interval.

Corollary 7.13

If f is polynomial $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ with n odd, then the range of f is $(-\infty, \infty)$.

Proof. If $a_{n}>0, \lim _{x \rightarrow \infty} f(x)=\infty$, and $\lim _{x \rightarrow-\infty} f(x)=-\infty$.
Thus we use the intermediate value theorem, where $f(a)$ is very negative and $f(b)$ is very positive, to show that for any real number c, we can find an $a<x_{0}<c$ such that $f\left(x_{0}\right)=c$.

