6 Sequences, Continuous Functions

Example 6.1 (Problem 2.3.4)
Assume $a_{n} \rightarrow a$, and $|a|<1$. Prove $\left(a_{n}\right)^{n} \rightarrow 0$.

Proof. Let $\epsilon>0$ be arbitrary, with $|a|+\epsilon<1$.
Then there is an N_{ϵ} so $n \geq N_{\epsilon}$ implies that $\left|a_{n}\right| \leq\left|a_{n}\right|+\epsilon$, so $\left|a_{n}\right|^{n}=\left|\left(a_{n}\right)^{n}\right| \leq\left(\left|a_{n}\right|+\epsilon\right)^{n} \rightarrow 0$ by Proposition 2.28.

Example 6.2 (Problem 2.3.9)
Let $a_{n}<b_{n}$ fr all n. Let $I_{n}=\left[a_{n}, b_{n}\right]$ with $I_{n+1} \subseteq I_{n}$ for all $n \geq 1$. Show there are a, b with $a_{n} \rightarrow a$, $b_{n} \rightarrow b$, and $[a, b] \subseteq I_{n}$ for all n.

Proof. We know that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is increasing and bounded above by b_{n} for all $n \geq 1$.
We know that $\left\{b_{n}\right\}_{n=1}^{\infty}$ is decreasing and bounded below by a_{n} for all $n \geq 1$.
Then the Monotone Convergence Theorem implies that there are a, b with $a_{n} \rightarrow a, b_{n} \rightarrow b$. Then $[a, b] \subseteq I_{n}$ for all n, because if $a_{n} \leq b_{n}$ for all n, then $b_{n} \rightarrow b \Longrightarrow a_{n} \leq b$ for all n, and $a_{n} \rightarrow a \Longrightarrow a \leq b_{n}$ for all n.

6.1 Continuous Functions - Chapter 3

Definition 6.3
A function $f: D \rightarrow R$ is continuous at $x_{0} \in D$ if whenever $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq D, x_{n} \rightarrow x_{0}$, then $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$
f is a continuous function if f is continuous at each x_{0} in D.

Example 6.4

Every polynomial is a continuous function (From Polynomial Property in Section 2.1: If p is a polynomial, and a_{n} converges to a, then $\left.p\left(a_{n}\right) \rightarrow p(a)\right)$

Also, every rational function is a continuous function.

1. The function $f(x)=\frac{1}{x}$ is a continuous function (it is continuous everywhere it is defined, but it is not defined at 0).
2. The function $g(x)=\sqrt{x}$ is a continuous function for the same reasons as above.
3. The function $g(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$ is a continuous, because if you approach $x=0, g(x)$ approaches 0.
4. The function $h(x)=\left\{\begin{array}{ll}\sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$ is not continuous, the function does not approach any significant value as x approaches 0 , so it is not continuous at 0 (it keeps oscillating). It is discontinuous even though it is defined for all reals.
5. The function $f(x)=\left\{\begin{array}{ll}-1 & x<0 \\ 1 & x \geq 0\end{array}\right.$ is not continuous at 0 .

But, the function $g(x)=\left\{\begin{array}{ll}-1 & x<0 \\ 1 & x \geq 0\end{array}\right.$ is continuous because it is continuous at every nonzero x.

Theorem 6.5 (Continuity Rules)

If f, g are continuous at $x=a$, then $f+g$ and $f \cdot g$ are continuous at $x=a$, and f / g is continuous at $x=a$ if $g(a) \neq 0$.

Example 6.6

Let $f(x)=\sin x$. Show that f is continuous at 0 .

Proof. Let x_{n} converge to $0\left(x_{n} \rightarrow 0\right)$. Then, $0 \leq\left|\sin x_{n}\right| \leq\left|x_{n}\right| \rightarrow 0$. So, $\sin x$ is continuous at 0 .

Example 6.7

Let $g(x)=\cos x$. Show that g is continuous at 0 .

Proof. $\sin ^{2} x+\cos ^{2} x=1$ for all x.
Let $x_{n} \rightarrow 0$. Then $\cos ^{2} x_{n}+\sin ^{2} x_{n} \rightarrow \cos ^{2} 0+\sin ^{2} 0=\cos ^{2} 0$, so $\cos ^{2} x_{n} \rightarrow 1$.
We have that $\cos x \geq 0$ on $[-\pi / 2, \pi / 2]$, so we conclude that $\cos x_{n} \rightarrow 1=\cos 0$.

Example 6.8

Let $f(x)=\sin x$. Show that f is a continuous function.

Proof. Let x_{0} be arbitrary. Let $x_{n}=x_{0}+h_{n} \rightarrow x_{0}$, so $h_{n} \rightarrow 0$.
Then $\sin x_{n}=\sin \left(x_{0}+h_{n}\right)=\sin x_{0} \cos h_{n}+{ }^{1} \sin {\overrightarrow{h_{n}}}^{0} \cos x_{0} \rightarrow \sin x_{0}$.
So $\sin x$ is continuous at an arbitrary x_{0}, so $\sin x$ is a continuous function.
Similarly, $\cos x$ is continuous on \mathbb{R}.
How about $\tan x=\frac{\sin x}{\cos x}, \cot x=\frac{\cos x}{\sin x}, \sec x=\frac{1}{\cos x}, \csc x=\frac{1}{\sin x}$? These are also continuous by the earlier continuity rules.

Example 6.9

Let $g(x)=\frac{\sin x}{x}$ if $x \neq 0, g(0)=1$ Prove that g is a continuous function.

Proof. The only problem is at $x=0$.
Let $x_{n} \rightarrow 0$ (let x_{n} converge to 0). Show that $g\left(x_{n}\right) \rightarrow 1$.
If $x_{n}>0$ for all n, then $0<\sin x_{n} \leq x_{n} \Longrightarrow \frac{\sin x_{n}}{x_{n}} \leq 1$.
Also, $x_{n} \leq \tan x_{n}=\frac{\sin x_{n}}{\cos x_{n}}$. Cross multiply to get $\cos x_{n} \leq \frac{\sin x_{n}}{x_{n}} \leq 1$. But as $n \rightarrow \infty, \cos x_{n} \rightarrow 1$. So, $x_{n} \rightarrow 0$, $x_{n}>0$ for all n implies that $g(0)=\frac{\sin x}{x_{n}} \rightarrow 1$

Similarly, if $x_{n}<0$ for some or all $n \geq 1$. So, g is continuous at 0 , so g is a continuous function.

Example 6.10

$k(x)=\left\{\begin{array}{ll}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{array}\right.$.
Then k is not continuous at any real x.

