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6 Sequences, Continuous Functions

Example 6.1 (Problem 2.3.4)
Assume an → a, and |a| < 1. Prove (an)

n → 0.

Proof. Let ϵ > 0 be arbitrary, with |a|+ ϵ < 1.
Then there is an Nϵ so n ≥ Nϵ implies that |an| ≤ |an|+ ϵ, so |an|n = |(an)n| ≤ (|an|+ ϵ)n → 0 by Proposition
2.28.

Example 6.2 (Problem 2.3.9)
Let an < bn fr all n. Let In = [an, bn] with In+1 ⊆ In for all n ≥ 1. Show there are a, b with an → a,
bn → b, and [a, b] ⊆ In for all n.

Proof. We know that {an}∞n=1 is increasing and bounded above by bn for all n ≥ 1.
We know that {bn}∞n=1 is decreasing and bounded below by an for all n ≥ 1.

Then the Monotone Convergence Theorem implies that there are a, b with an → a, bn → b. Then [a, b] ⊆ In for
all n, because if an ≤ bn for all n, then bn → b =⇒ an ≤ b for all n, and an → a =⇒ a ≤ bn for all n.

6.1 Continuous Functions - Chapter 3

Definition 6.3
A function f : D → R is continuous at x0 ∈ D if whenever {xn}∞n=1 ⊆ D,xn → x0, then f(xn) → f(x0)

f is a continuous function if f is continuous at each x0 in D.

Example 6.4
Every polynomial is a continuous function (From Polynomial Property in Section 2.1: If p is a polynomial,
and an converges to a, then p(an) → p(a))

Also, every rational function is a continuous function.

1. The function f(x) = 1
x is a continuous function (it is continuous everywhere it is defined, but it is not

defined at 0).

2. The function g(x) =
√
x is a continuous function for the same reasons as above.

3. The function g(x) =

{
x sin 1

x x ̸= 0

0 x = 0
is a continuous, because if you approach x = 0, g(x) approaches

0.

4. The function h(x) =

{
sin 1

x x ̸= 0

0 x = 0
is not continuous, the function does not approach any significant

value as x approaches 0, so it is not continuous at 0 (it keeps oscillating). It is discontinuous even
though it is defined for all reals.

5. The function f(x) =

{
−1 x < 0

1 x ≥ 0
is not continuous at 0.

But, the function g(x) =

{
−1 x < 0

1 x ≥ 0
is continuous because it is continuous at every nonzero x.
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Theorem 6.5 (Continuity Rules)
If f, g are continuous at x = a, then f + g and f · g are continuous at x = a, and f/g is continuous at x = a
if g(a) ̸= 0.

Example 6.6
Let f(x) = sinx. Show that f is continuous at 0.

Proof. Let xn converge to 0 (xn → 0). Then, 0 ≤ | sinxn| ≤ |xn| → 0. So, sinx is continuous at 0.

Example 6.7
Let g(x) = cosx. Show that g is continuous at 0.

Proof. sin2 x+ cos2 x = 1 for all x.
Let xn → 0. Then cos2 xn + sin2 xn → cos2 0 + sin2 0 = cos2 0, so cos2 xn → 1.
We have that cosx ≥ 0 on [−π/2, π/2], so we conclude that cosxn → 1 = cos 0.

Example 6.8
Let f(x) = sinx. Show that f is a continuous function.

Proof. Let x0 be arbitrary. Let xn = x0 + hn → x0, so hn → 0.
Then sinxn = sin(x0 + hn) = sinx0����: 1

coshn +����: 0
sinhn cosx0 → sinx0.

So sinx is continuous at an arbitrary x0, so sinx is a continuous function.

Similarly, cosx is continuous on R.

How about tanx = sin x
cos x , cotx = cos x

sin x , secx = 1
cos x , cscx = 1

sin x? These are also continuous by the earlier
continuity rules.

Example 6.9
Let g(x) = sin x

x if x ̸= 0, g(0) = 1 Prove that g is a continuous function.

Proof. The only problem is at x = 0.
Let xn → 0 (let xn converge to 0). Show that g(xn) → 1.

If xn > 0 for all n, then 0 < sinxn ≤ xn =⇒ sin xn

xn
≤ 1.

Also, xn ≤ tanxn = sin xn

cos xn
. Cross multiply to get cosxn ≤ sin xn

xn
≤ 1. But as n → ∞, cosxn → 1. So, xn → 0,

xn > 0 for all n implies that g(0) = sin x
xn

→ 1

Similarly, if xn < 0 for some or all n ≥ 1. So, g is continuous at 0, so g is a continuous function.

Example 6.10

k(x) =

{
1 x ∈ Q
0 x /∈ Q

.

Then k is not continuous at any real x.
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