41 MATH410 Fall 2022 Final Exam

- 1. (a) Induction: $n^2 \ge 2n+3$ for $n \ge 3$. Solution: Base case: n = 3: $3^2 \ge 2(3) + 3$, true. Inductive Hypothesis: Assume for an arbitrary $n \ge 3$, $n^2 \ge 2n+3$. Then $(n+1)^2 = n^2 + 2n + 1 \ge (2n+3) + 2n + 1 = 4n + 4 \ge 2(n+1) + 3$.
 - (b) Let $\epsilon > 0$. Prove there is an n > 0 with $\frac{1}{n} < \epsilon + \sin^2 x$. Archimedean property \implies there is n so $0 < \frac{1}{n} < \epsilon$, and thus $0 < \frac{1}{n} < \epsilon + \sin^2 x$.
- 2. (a) $\{a_n\}_{n=1}^{\infty}$ and a are given. Definition: $\lim_{n\to\infty} a_n = a \iff$ for any $\epsilon > 0$ there is an N so $n \ge N \implies |a_n - a| < \epsilon$. Negation: There is an $\epsilon > 0$ so for all $N \ge 1$, there is $n_N \ge N$ so $|a_{n_N} - a| \ge \epsilon$.
 - (b) $\{b_n\}_{n=1}^{\infty}$ is increasing. $\{b_{n_k}\}_{k=1}^{\infty}$ converges to b. Then for any $\epsilon > 0$, there is an N so $n_k \ge N \implies |b_{n_k} - b| < \epsilon$, so $b - \epsilon < b_{n_k} < b + \epsilon$. Pick $n_{k_0} \ge N$. Then $n \ge n_{k_0}$ then $\{b_n\}_{n=1}^{\infty}$ increasing implies $b - \epsilon < b_{n_k} \le b_n < b_n + \epsilon$, so $|b_n - b| < \epsilon$.
- 3. (a) $g(x) = x^3 + 4x 7 \implies g(0) < 0, g(2) > 0$. Since g is continuous on [0, 2], by the IVT there is a c in (0, 2) with g(c) = 0. $g'(x) = 3x^2 + 4 > 0$ for all x, so g is strictly increasing, so there is only 1 solution.
 - (b) f, g is uniformly continuous on D. Let $(u_n)_{n=1}^{\infty}$, $(v_n)_{n=1}^{\infty}$ be arbitrary in D with $|u_n v_n| \to 0$. Then $|(f+g)(u_n) - (f+g)(v_n)| \le |f(u_n) - f(v_n)| + |g(u_n) - g(v_n)| \to 0$, since f and g are uniformly continuous.

(c) $h(x) = \frac{1}{x}, x \ge 1$. Let $\epsilon > 0$ be arbitrary. To find $\delta > 0$ so $|x - 3| < \delta, x \ge 1 \implies \left|\frac{1}{x} - \frac{1}{3}\right| < \epsilon$. Note if $\delta = \min(1, \epsilon)$, then $|x - 3| < \delta \implies$

$$\left|\frac{1}{x} - \frac{1}{3}\right| = \frac{|3 - x|}{|3x|} \le \frac{|3 - x|}{3} < \frac{\epsilon}{3} < \epsilon$$

4. (a) $f(x) = \frac{1}{\sqrt{x}}$. Want f'(4) by definition.

$$f'(4) = \lim_{x \to 4} \frac{f(x) - f(4)}{x - 4}$$

= $\lim_{x \to 4} \frac{\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{4}}}{x - 4}$
= $\lim_{x \to 4} \frac{2 - \sqrt{x}}{2\sqrt{x}(x - 4)}$
= $\lim_{x \to 4} \frac{2 - \sqrt{x}}{2\sqrt{x}(\sqrt{x} - \sqrt{4})(\sqrt{x} + \sqrt{4})}$
= $\lim_{x \to 4} \frac{-1}{2\sqrt{x}(\sqrt{x} + 2)}$
= $\frac{-1}{16}$

- (b) $g(x) = \sqrt{x}, x \ge 1 \implies g'(x) = \frac{1}{2\sqrt{x}} > 0$ for x > 1, so g is strictly increasing, so g^{-1} exists. $g(4) = \sqrt{4} = 2$. So, $(g^{-1})'(2) = \frac{1}{g'(4)} = 4$.
- (c) MVThm: Let $f : [a, b] \to \mathbb{R}$ be continuous, and differentiable on (a, b). Then there is a c in (a, b) with $f'(c) = \frac{f(b) f(a)}{b a}$. If $f(x) = \sqrt{x} + x^2$, $1 \le x \le 4$, then f satisfies the conditions of MVT, so there is c in (1, 4) with

$$f'(c) = \frac{f(4) - f(1)}{4 - 1} = \frac{16}{3}$$

5. (a) Assume f is bounded on [a, b]. Then

$$\underline{\int}_{a}^{b} f = \sup_{P} L(f, P) \le \inf_{Q} U(f, Q) = \overline{\int}_{a}^{b} f$$

- (b) $g(x) = x^3$ for $1 \le x \le 2$. Show g is integrable. Solution: let P_n is a regular partition of [1,2], with $gap P_n = \frac{1}{n}$. Then $U(g,P_n) - L(f,P_n) = \sum_{i=1}^n M_i \frac{1}{n} - \sum_{i=1}^n m_i \frac{1}{n} = \frac{1}{n} \sum_{i=1}^n (M_1 - m_1 + M_2 - m_2 + \dots + M_n - m_n) = \frac{1}{n} (M_n - m_1) \to 0$. By the archimedes riemann theorem g is integrable.
- (c) $g(x) = \begin{cases} x^2 & 0 \le x < 2\\ -1 & x = 2 \end{cases}$ Then g is continuous on [0, 2) and bounded on [0, 2]. Then $\int_0^2 g(x) \, dx = \int_0^2 x^2 \, dx = \frac{1}{3}(2)^3 = \frac{8}{3}.$
- 6. (a) $F(x) = \int_{\ln x}^{\sec x} (3-t^2) dt \implies F'(x) = (3 \sec^2 x)(\sec x \tan x) (3 (\ln x)^2) \cdot \frac{1}{x}.$