40 MATH410 Exam 3 Fall 2022

1. (a) $f(x)=\frac{2}{7} x^{7 / 2}, x_{0}=1$. (Note: no derivative at 0 because f is not defined about an interval containing $0)$. Find $p_{2}(x)$.

Solution: $f(x)=\frac{2}{7} x^{7 / 2}, f^{\prime}(x)=x^{5 / 2}, f^{\prime \prime}(x)=\frac{5}{2} x^{3 / 2}, f^{(3)}(x)=\frac{15}{4} x^{1 / 2}$
$f(1)=\frac{2}{7}, f^{\prime}(1)=1, f^{\prime \prime}(1)=\frac{5}{2}$. So, $p_{2}(x)=\frac{2}{7}+(x-1)+\frac{5}{2} \frac{(x-1)^{2}}{2!}$.
(b) $f(x)=p_{2}(x)+r_{2}(x)$, and $r_{2}(x)=\frac{f^{(3)}\left(c_{x}\right)}{3!}(x-1)^{3}$, or $r_{2}\left(\frac{3}{2}\right)=\frac{f^{(3)}\left(c_{3 / 2}\right)}{3!}\left(\frac{3}{2}-1\right)^{3}=\cdots$
2. (a) $g: \mathbb{R} \rightarrow \mathbb{R}$, non constant, $g^{(n)}(0)=0$ for $n \geq 0$.
$g(x)=\left\{\begin{array}{ll}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{array}\right.$.
(b) Find power series with radius of convergence $=4, I=(-4,4]$.

Ex: $f(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k}\left(\frac{x}{4}\right)^{k}$.
By the ratio test, L is $\frac{|x|}{4} \frac{k}{k+1} \rightarrow \frac{|x|}{4}<1$ if $|x|<4=r$.
For $I, x=4 \Longrightarrow \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k}$ converges by the alternating series test.
$x=-4 \Longrightarrow \sum_{k=0}^{\infty} \frac{1}{k}$ which diverges by the p test.
So $I=(-4,4]$.
3. (a) $\sum_{k=1}^{\infty}(-1)^{k}\left(\frac{k-1}{k^{2}+1}\right)^{3}$ converges absolutely, conditionally, or diveges?

Solution: $\left|\frac{k-1}{k^{2}+1}\right|^{3} \leq\left(\frac{k}{k^{2}}\right)=\frac{1}{k^{3}}$.
So, $\left.\sum_{k=1}^{\infty}\left|(-1)^{k}\left(\frac{k-1}{k^{2}+1}\right)^{3}\right| \right\rvert\, \leq \sum_{k=1}^{\infty} \frac{1}{k^{3}}$ converges by $p=3$.
So the series converges absolutely by the comparison test.
(b) $f(x)=\frac{1}{1+2 x}$. Find power series, r, I, power series for $f^{\prime}(x)$.
$\frac{1}{1+x}=\sum_{k=1}^{\infty}(-1)^{k} x^{k} \Longrightarrow \frac{1}{1+2 x}=\sum_{k=0}^{\infty}(-1)^{k}(2 x)^{k}=\sum_{k=0}^{\infty}(-1)^{k} 2^{k} x^{k}$.
Ratio test: we get $2|x|<1$ if $|x|<\frac{1}{2}$, so $r=\frac{1}{2}$.
For $I: x=\frac{1}{2} \Longrightarrow \sum_{k=0}^{\infty}(-1)^{k} 2^{k}\left(\frac{1}{2}\right)^{k}=\sum_{k=0}^{\infty}(-1)^{k}$ diverges.
$x=-\frac{1}{2} \Longrightarrow \sum_{k=0}^{\infty} 1$ diverges, so $I=\left(-\frac{1}{2}, \frac{1}{2}\right)$.
$f^{\prime}(x)=\sum_{k=1}^{\infty}(-1)^{k} 2^{k} k x^{k-1}$. Note we need to change the bound so we dont get -1 .
4. (a) State alternating series test
(b) Prove if $\left\{b_{n}\right\}_{n=1}^{\infty}$ converges, then it is a cauchy sequence.

Proof. Let $\epsilon>0$ be arbitrary. Then $\lim _{n \rightarrow \infty} b_{n}=L \Longrightarrow$ there is N_{ϵ} so $n \geq N_{\epsilon} \Longrightarrow\left|b_{n}-L\right|<\epsilon$.
Let $m, n \geq N_{\epsilon}$. Then $\left|b_{m}-b_{n}\right| \leq\left|b_{m}-L\right|+\left|L-b_{n}\right| \leq \epsilon+\epsilon=2 \epsilon$. So sequence is Cauchy.
5. (a) $f_{n}(x)=1-x^{n}, 0 \leq x \leq 1$.

Show $f_{n} \rightarrow f$ pointwise and find the f.
$0 \leq x<1 \Longrightarrow 1-x^{n} \rightarrow 1$.
and $f_{n}(1)=0$ for all n.
So if $f(x)=\left\{\begin{array}{ll}1 & 0 \leq x<1 \\ 0 & x=1\end{array}\right.$, then $f_{n} \rightarrow f$ pointwise.
(b) Note f_{n} is continuous for all n, and f is not continuous. So $f_{n} \nrightarrow f$ uniformly. by Thm 9.31.
(c) $\int_{0}^{1} f_{n}(x) d x=\int_{0}^{1}\left(1-x^{n}\right) d x=\left.\left(x-\frac{x^{n+1}}{n+1}\right)\right|_{0} ^{1}=\left(1-\frac{1}{1-n+1}\right)-0 \rightarrow 1=\int_{0}^{1} f(x) d x$. So $\int_{0}^{1} f_{n} \rightarrow \int_{0}^{1} f$.

Example 40.1 (Exercise 9.5.8)
Let $f(x)=\frac{1}{1+x^{4}}$. Find $\int_{0}^{1 / 2} f(x) d x$ (power series).

Solution: $\frac{1}{1+x}=\sum_{k=0}^{\infty}(-1)^{k} x^{k},|x|<1 \Longrightarrow \frac{1}{1+x^{4}}=\sum_{k=0}^{\infty}(-1)^{k} x^{4 k},-1<x<1$.
$\int_{0}^{1 / 2} \frac{1}{1+x^{4}} d x=\int_{0}^{1 / 2}\left(\sum_{k=0}^{\infty}(-1)^{k} x^{4 k}\right) d x=\sum_{k=0}^{\infty}(-1)^{k}\left(\int_{0}^{1 / 2} x^{4 k}\right) d x=\left.\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{4 k+1}}{4 k+1}\right|_{0} ^{1 / 2}=$ $\sum_{k=0}^{\infty}(-1)^{k}(1 / 2)^{4 k+1} \frac{1}{4 k+1}$.

