40 MATH410 Exam 3 Fall 2022

1. (a) $f(x) = \frac{2}{7}x^{7/2}$, $x_0 = 1$. (Note: no derivative at 0 because f is not defined about an interval containing 0). Find $p_2(x)$.

Solution:
$$f(x) = \frac{2}{7}x^{7/2}$$
, $f'(x) = x^{5/2}$, $f''(x) = \frac{5}{2}x^{3/2}$, $f^{(3)}(x) = \frac{15}{4}x^{1/2}$
 $f(1) = \frac{2}{7}$, $f'(1) = 1$, $f''(1) = \frac{5}{2}$. So, $p_2(x) = \frac{2}{7} + (x-1) + \frac{5}{2}\frac{(x-1)^2}{2!}$.

(b)
$$f(x) = p_2(x) + r_2(x)$$
, and $r_2(x) = \frac{f^{(3)}(c_x)}{3!}(x-1)^3$, or $r_2\left(\frac{3}{2}\right) = \frac{f^{(3)}(c_{3/2})}{3!}(\frac{3}{2}-1)^3 = \cdots$

- 2. (a) $g : \mathbb{R} \to \mathbb{R}$, non constant, $g^{(n)}(0) = 0$ for $n \ge 0$. $g(x) = \begin{cases} e^{-1/x^2} & x \ne 0\\ 0 & x = 0 \end{cases}$.
 - (b) Find power series with radius of convergence = 4, I = (-4, 4]. Ex: $f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k} \left(\frac{x}{4}\right)^k$. By the ratio test, L is $\frac{|x|}{4} \frac{k}{k+1} \rightarrow \frac{|x|}{4} < 1$ if |x| < 4 = r. For $I, x = 4 \implies \sum_{k=0}^{\infty} \frac{(-1)^k}{k}$ converges by the alternating series test. $x = -4 \implies \sum_{k=0}^{\infty} \frac{1}{k}$ which diverges by the p test. So I = (-4, 4].
- 3. (a) $\sum_{k=1}^{\infty} (-1)^k \left(\frac{k-1}{k^2+1}\right)^3$ converges absolutely, conditionally, or diveges? Solution: $\left|\frac{k-1}{k^2+1}\right|^3 \leq \left(\frac{k}{k^2}\right) = \frac{1}{k^3}$. So, $\sum_{k=1}^{\infty} \left|(-1)^k \left(\frac{k-1}{k^2+1}\right)^3\right| \leq \sum_{k=1}^{\infty} \frac{1}{k^3}$ converges by p = 3. So the series converges absolutely by the comparison test.
 - (b) $f(x) = \frac{1}{1+2x}$. Find power series, r, I, power series for f'(x).

$$\begin{array}{l} \frac{1}{1+x} = \sum_{k=1}^{\infty} (-1)^k x^k \implies \frac{1}{1+2x} = \sum_{k=0}^{\infty} (-1)^k (2x)^k = \sum_{k=0}^{\infty} (-1)^k 2^k x^k.\\ \text{Ratio test: we get } 2|x| < 1 \text{ if } |x| < \frac{1}{2}, \text{ so } r = \frac{1}{2}.\\ \text{For } I: x = \frac{1}{2} \implies \sum_{k=0}^{\infty} (-1)^k 2^k (\frac{1}{2})^k = \sum_{k=0}^{\infty} (-1)^k \text{ diverges.}\\ x = -\frac{1}{2} \implies \sum_{k=0}^{\infty} 1 \text{ diverges, so } I = (-\frac{1}{2}, \frac{1}{2}).\\ f'(x) = \sum_{k=1}^{\infty} (-1)^k 2^k k x^{k-1}. \text{ Note we need to change the bound so we dont get} \end{array}$$

- 4. (a) State alternating series test
 - (b) Prove if $\{b_n\}_{n=1}^{\infty}$ converges, then it is a cauchy sequence.

Proof. Let $\epsilon > 0$ be arbitrary. Then $\lim_{n \to \infty} b_n = L \implies$ there is N_{ϵ} so $n \ge N_{\epsilon} \implies |b_n - L| < \epsilon$. Let $m, n \ge N_{\epsilon}$. Then $|b_m - b_n| \le |b_m - L| + |L - b_n| \le \epsilon + \epsilon = 2\epsilon$. So sequence is Cauchy. \Box

-1.

- 5. (a) $f_n(x) = 1 x^n$, $0 \le x \le 1$. Show $f_n \to f$ pointwise and find the f. $0 \le x < 1 \implies 1 - x^n \to 1$. and $f_n(1) = 0$ for all n. So if $f(x) = \begin{cases} 1 & 0 \le x < 1 \\ 0 & x = 1 \end{cases}$, then $f_n \to f$ pointwise.
 - (b) Note f_n is continuous for all n, and f is not continuous. So $f_n \not\rightarrow f$ uniformly. by Thm 9.31.
 - (c) $\int_0^1 f_n(x) dx = \int_0^1 (1-x^n) dx = (x \frac{x^{n+1}}{n+1})|_0^1 = (1 \frac{1}{1-n+1}) 0 \to 1 = \int_0^1 f(x) dx$. So $\int_0^1 f_n \to \int_0^1 f(x) dx$.

Example 40.1 (Exercise 9.5.8) Let $f(x) = \frac{1}{1+x^4}$. Find $\int_0^{1/2} f(x) dx$ (power series).

Solution: $\frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k, \ |x| < 1 \implies \frac{1}{1+x^4} = \sum_{k=0}^{\infty} (-1)^k x^{4k}, \ -1 < x < 1.$ $\int_0^{1/2} \frac{1}{1+x^4} dx = \int_0^{1/2} \left(\sum_{k=0}^{\infty} (-1)^k x^{4k} \right) dx = \sum_{k=0}^{\infty} (-1)^k \left(\int_0^{1/2} x^{4k} \right) dx = \sum_{k=0}^{\infty} (-1)^k \frac{x^{4k+1}}{4k+1} \Big|_0^{1/2} = \sum_{k=0}^{\infty} (-1)^k (1/2)^{4k+1} \frac{1}{4k+1}.$