
Lecture 4: Sequences, Closed Sets, Monotonicity (Sec. 2.2, 2.3)

4 Sequences, Closed Sets, Monotonicity

4.1 More Sequences

Note 4.1
Keep in mind that an is not a sequence, it is a number.

Example 4.2 (Problem 2.1.6)
Suppose {an} converges to a > 0. Show there is an index N so that n ≥ N =⇒ an > 0.
Solution: Let ϵ be arbitrary with ϵ < a

2 . Then, there is a N such that n ≥ N =⇒ |an− a| < ϵ < a
2 so then

an > a
2 > 0.

Example 4.3 (Problem 2.1.14)
Let sn = 1

1(2) +
1

2(3) + · · ·+
1

n(n+1) , for n ≥ 1. Prove that limn→∞ sn = 1.
sn = (1− 1

2 ) + ( 12 −
1
3 ) + · · ·+ ( 1n −

1
n+1 ). Draw out telescoping cancellations. = 1− 1

n(n+1) → 1

Here, {sn}∞n=1 is a telescoping sequence

Proposition 4.4
A set S of reals is dense in R if and only if for each x in R, there is a sequence {sn}∞n=1 ⊆ S with sn → x.

Proof. ( =⇒ ) Assume S is dense in R, and x is arbitrary in R. For n ≥ 1, look at (x− 1
n , x+ 1

n ).
Because S is dense in R, this implies that there is an sn in (x− 1

n , x+ 1
n ) for n ≥ 1. Then, sn → x.

(⇐= ) Assume S is not dense in R. Then there is an open interval (a, b) such that (a, b) ∩ S = ∅. Then, there
is no sequence in S converging to a+b
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4.2 Closed sets

Definition 4.5
A set S in R is closed if whenever a sequence {sn}∞n=1 ⊆ S and sn → a, then a is in S.

Example 4.6
The sets [1, π], { 1n : n ≥ 1} ∪ {0}, and {n : n ≥ 1} are closed in R.

The sets (0, 1), [0, 1) are not closed in R.

4.3 Monotonicity

Definition 4.7
{an}∞n=1 is increasing (or monotonically increasing) if an ≤ an+1 for all n ≥ 1, and is decreasing (or
monotonically decreasing) if an ≥ an+1 for all n ≥ 1.

{an}∞n=1 is monotone if it is monotonically increasing or monotonically decreasing.

{an}∞n=1 is strictly increasing if an < an+1 for n ≥ 1, and similarly {an}∞n=1 is strictly decreasing if
an > an+1 for all n ≥ 1.

Example 4.8
{ 1n}

∞
n=1 is decreasing, {1− 1

n}
∞
n=1 is increasing, {π, π, · · · } is increasing and decreasing.
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Theorem 4.9 (Monotone Convergence Theorem *** - Thm 2.25)
A monotone sequence converges if and only if it is bounded.

Proof. Assume {an}∞n=1 is increasing.

Assume that {an}∞n=1 converges.
By Thm 2.18 (Lec 3), then {an}∞n=1 is bounded.

Assume {an}∞n=1 is bounded. So let a = sup{an : n = 1, 2, · · · }. Let ϵ > 0 be arbitrary. Then there is
an N∗ so that a− ϵ < aN∗ ≤ a. But {an}∞n=1 is increasing by assumption, which implies that if n ≥ N∗, then
a− ϵ < aN∗ ≤ an ≤ a, so |a− an| < ϵ if n ≥ N∗. So, limn→∞ an = a, so an → a.

Example 4.10

Let a1 =
√
2, a2 =

√
2 +
√
2 =
√
2 + a, a3 =

√
2 +

√
2 +
√
2 =
√
2 + a2, · · · , an+1 =

√
2 + an, for n ≥ 1.

Show that limn→∞ an = 2.

Solution: We use the law of induction to show that 0 ≤ an ≤ 2 for all n, and to show that {an} is increasing.

We show that 0 ≤ an ≤ 2 by the law of induction:
Base case: 0 ≤ a1 =

√
2 < 2.

Induction Hypothesis: assume for arbitrary n ≥ 1, that 0 ≤ an ≤ 2.
Then,

an+1 =
√
2 + an ≤

√
2 + 2 =

√
4 = 2

So, 0 ≤ an ≤ 2 for n ≥ 1.

We show that {an}∞n=1 is increasing by the law of induction:
Base case: a1 =

√
2 ≤

√
2 +
√
2 = a2.

Induction Hypothesis: assume for arbitrary n ≥ 1, that an ≤ an+1.
Then,

an+2 =
√

2 + an+1 ≥
√
2 + an = an+1

So, an+2 ≥ an+1. So, {an} is increasing.

Then by the Monotone Convergence Theorem, there is an a so that an → a, so also, an+1 → a.
So, a← an+1 =

√
2 + an →

√
2 + a. Thus, a =

√
2 + a, so a2 = 2 + a, so a2 − a− 2 = 0.

Then, (a− 2)(a+ 1) = 0, so a = 2 or a = −1. We know that all of our ans are positive, so then we must
have a = 2, so limn→∞ an = 2.

Guiding Question
Suppose we have b1 =

√
6, b2 =

√
6 + b1, · · · , bn+1 =

√
6 + bn. Does limn→∞ bn exist? If so what is it?
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