4 Sequences, Closed Sets, Monotonicity

4.1 More Sequences

Note 4.1

Keep in mind that a_n is not a sequence, it is a number.

Example 4.2 (Problem 2.1.6)

Suppose $\{a_n\}$ converges to a > 0. Show there is an index N so that $n \ge N \implies a_n > 0$. Solution: Let ϵ be arbitrary with $\epsilon < \frac{a}{2}$. Then, there is a N such that $n \ge N \implies |a_n - a| < \epsilon < \frac{a}{2}$ so then $a_n > \frac{a}{2} > 0$.

Example 4.3 (Problem 2.1.14) Let $s_n = \frac{1}{1(2)} + \frac{1}{2(3)} + \dots + \frac{1}{n(n+1)}$, for $n \ge 1$. Prove that $\lim_{n \to \infty} s_n = 1$. $s_n = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n} - \frac{1}{n+1})$. Draw out telescoping cancellations. $= 1 - \frac{1}{n(n+1)} \to 1$

Here, $\{s_n\}_{n=1}^{\infty}$ is a telescoping sequence

Proposition 4.4 A set S of reals is dense in \mathbb{R} if and only if for each x in \mathbb{R} , there is a sequence $\{s_n\}_{n=1}^{\infty} \subseteq S$ with $s_n \to x$.

Proof. (\implies) Assume S is dense in \mathbb{R} , and x is arbitrary in \mathbb{R} . For $n \ge 1$, look at $(x - \frac{1}{n}, x + \frac{1}{n})$. Because S is dense in \mathbb{R} , this implies that there is an s_n in $(x - \frac{1}{n}, x + \frac{1}{n})$ for $n \ge 1$. Then, $s_n \to x$.

(\Leftarrow) Assume S is not dense in \mathbb{R} . Then there is an open interval (a, b) such that $(a, b) \cap S = \emptyset$. Then, there is no sequence in S converging to $\frac{a+b}{2}$

4.2 Closed sets

Definition 4.5 A set S in \mathbb{R} is closed if whenever a sequence $\{s_n\}_{n=1}^{\infty} \subseteq S$ and $s_n \to a$, then a is in S.

Example 4.6

The sets $[1,\pi]$, $\{\frac{1}{n}: n \ge 1\} \cup \{0\}$, and $\{n: n \ge 1\}$ are closed in \mathbb{R} .

The sets (0,1), [0,1) are not closed in \mathbb{R} .

4.3 Monotonicity

Definition 4.7

 $\{a_n\}_{n=1}^{\infty}$ is **increasing** (or monotonically increasing) if $a_n \leq a_{n+1}$ for all $n \geq 1$, and is **decreasing** (or monotonically decreasing) if $a_n \geq a_{n+1}$ for all $n \geq 1$.

 $\{a_n\}_{n=1}^{\infty}$ is monotone if it is monotonically increasing or monotonically decreasing.

 ${a_n}_{n=1}^{\infty}$ is strictly increasing if $a_n < a_{n+1}$ for $n \ge 1$, and similarly ${a_n}_{n=1}^{\infty}$ is strictly decreasing if $a_n > a_{n+1}$ for all $n \ge 1$.

Example 4.8

 $\{\frac{1}{n}\}_{n=1}^{\infty}$ is decreasing, $\{1-\frac{1}{n}\}_{n=1}^{\infty}$ is increasing, $\{\pi, \pi, \cdots\}$ is increasing and decreasing.

Theorem 4.9 (Monotone Convergence Theorem *** - Thm 2.25) A monotone sequence converges if and only if it is bounded.

Proof. Assume $\{a_n\}_{n=1}^{\infty}$ is increasing.

Assume that $\{a_n\}_{n=1}^{\infty}$ converges. By Thm 2.18 (Lec 3), then $\{a_n\}_{n=1}^{\infty}$ is bounded.

Assume $\{a_n\}_{n=1}^{\infty}$ is bounded. So let $a = \sup\{a_n : n = 1, 2, \cdots\}$. Let $\epsilon > 0$ be arbitrary. Then there is an N^* so that $a - \epsilon < a_{N^*} \le a$. But $\{a_n\}_{n=1}^{\infty}$ is increasing by assumption, which implies that if $n \ge N^*$, then $a - \epsilon < a_{N^*} \le a_n \le a$, so $|a - a_n| < \epsilon$ if $n \ge N^*$. So, $\lim_{n \to \infty} a_n = a$, so $a_n \to a$.

Example 4.10

Let $a_1 = \sqrt{2}$, $a_2 = \sqrt{2 + \sqrt{2}} = \sqrt{2 + a}$, $a_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}} = \sqrt{2 + a_2}$, \cdots , $a_{n+1} = \sqrt{2 + a_n}$, for $n \ge 1$. Show that $\lim_{n \to \infty} a_n = 2$.

<u>Solution</u>: We use the law of induction to show that $0 \le a_n \le 2$ for all n, and to show that $\{a_n\}$ is increasing.

We show that $0 \le a_n \le 2$ by the law of induction: Base case: $0 \le a_1 = \sqrt{2} < 2$. Induction Hypothesis: assume for arbitrary $n \ge 1$, that $0 \le a_n \le 2$. Then,

$$a_{n+1} = \sqrt{2+a_n} \le \sqrt{2+2} = \sqrt{4} = 2$$

So, $0 \le a_n \le 2$ for $n \ge 1$.

We show that $\{a_n\}_{n=1}^{\infty}$ is increasing by the law of induction: Base case: $a_1 = \sqrt{2} \le \sqrt{2 + \sqrt{2}} = a_2$. Induction Hypothesis: assume for arbitrary $n \ge 1$, that $a_n \le a_{n+1}$. Then,

$$a_{n+2} = \sqrt{2} + a_{n+1} \ge \sqrt{2} + a_n = a_{n+1}$$

So, $a_{n+2} \ge a_{n+1}$. So, $\{a_n\}$ is increasing.

Then by the Monotone Convergence Theorem, there is an a so that $a_n \to a$, so also, $a_{n+1} \to a$. So, $a \leftarrow a_{n+1} = \sqrt{2 + a_n} \to \sqrt{2 + a}$. Thus, $a = \sqrt{2 + a}$, so $a^2 = 2 + a$, so $a^2 - a - 2 = 0$. Then, (a - 2)(a + 1) = 0, so a = 2 or a = -1. We know that all of our a_n s are positive, so then we must have a = 2, so $\lim_{n \to \infty} a_n = 2$.

Guiding Question Suppose we have $b_1 = \sqrt{6}$, $b_2 = \sqrt{6+b_1}$, \cdots , $b_{n+1} = \sqrt{6+b_n}$. Does $\lim_{n\to\infty} b_n$ exist? If so what is it?