39 Power Series

Suppose $\sum_{k=1}^{\infty} a_k$ converges. What do we know about $\{a_k\}_{k=1}^{\infty}$? $\lim_{k\to\infty} a_k = 0$ and $\{a_k\}_{k=1}^{\infty}$ bounded.

Note 39.1

Recall $\sum_{k=1}^{\infty} a_k$ converges absolutely if $\sum_{k=1}^{\infty} |a_k|$ converges, $\sum_{k=1}^{\infty} a_k$ converges conditionally if $\sum_{k=1}^{\infty} |a_k|$ diverges. (Ex. $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k}$)

Definition 39.2

Let $f(x) = \sum_{k=0}^{\infty} c_k x^k$. The domain of f is all x such that $\sum_{k=0}^{\infty} c_k x^k$ converges. We say the power series expansion of f is $\sum_{k=0}^{\infty} c_k x^k$ (about x = 0).

Theorem 39.3 (Thm 9.40) If $f(x) = \sum_{k=0}^{\infty} c_k x^k$ converges for x = s, then is converges absolutely for |x| < |s|.

Proof. If $f(s) = \sum_{k=0}^{\infty} c_k s^k$ converges, then $\lim_{k\to\infty} c_k s^k = 0$, so there is an $M < \infty$ so $|c_k s^k| \le M$ for $k \ge 0$. Let |x| < |s|. Then $\sum_{k=0}^{\infty} |c_k x^k| = \sum_{k=0}^{\infty} |c_k| |s^k| \left| \frac{x}{s} \right|^k \le \sum_{k=0}^{\infty} M \left| \frac{x}{s} \right|^k = M \sum_{k=0}^{\infty} \left| \frac{x}{s} \right|^k$ which converges by the geometric series test.

So $\sum_{k=0}^{\infty} c_k x^k$ converges by the comparison test, and converges absolutely.

Corollary 39.4

Each power series $\sum_{k=0}^{\infty} c_k x^k$ converges in one of the 3 ways:

- 1. Converges only for x = 0. Ex: $\sum_{k=0}^{\infty} x^k$
- 2. Converges for all x. Ex: $\sum_{k=0}^{\infty} \frac{x^k}{k!}$
- 3. Converges for all |x| < r. Diverges for all |x| > r, where $0 < r < \infty$.

Definition 39.5

If $\sum c_k x^k$ converges for |x| < r, diverges for |x| > r, then r is the **radius of convergence** of the power series.

So, for 1, r = 0, for 2, $r = \infty$.

Definition 39.6

The interval of convergence of $\sum_{k=0}^{\infty} c_k x^k$, denoted by *I*, is all *x* for which the power series converges.

Possibilities: $I = \{0\}, I = (-\infty, \infty), I = [-r, r], [-r, r), (-r, r], (-r, r), \text{ with } 0 < r < \infty.$

Example 39.7 $\sum_{k=0}^{\infty} \frac{x^{k}}{2^{k}}$ By ratio test: $\left|\frac{x^{k+1}/2^{k+1}}{x^{k}/2^{k}}\right| = \frac{|x|}{2} < 1$ if |x| < 2, > 1 if |x| > 2, so r = 2. For $I: x = 2 \implies \sum_{k=0}^{\infty} \frac{2^{k}}{2^{k}} = \sum_{k=0}^{\infty} 1$ diverges by the *k*th term test. $x = -2 \implies \sum_{k=0}^{\infty} \frac{(-2)^{k}}{2^{k}} = \sum_{k=0}^{\infty} (-1)^{k}$ diverges by the *k*th term test. So, I = (-2, 2).

Example 39.8 $\sum_{k=1}^{\infty} \frac{(-1)^k x^k}{k^{3k}}$. By the ratio test: $\Big|\frac{(-1)^{k+1}x^{k+1}/(k+1)e^{k+1}}{(-1)x^k/x^{3k}}\Big| = \frac{|x|}{3}\frac{k}{k+1} \to \frac{|x|}{3}$ So for the same reasons as before, r = 3. For $I: x = 3 \implies \sum_{k=1}^{\infty} \frac{(-1)^k 3^k}{k3^k} = \sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ conerges by alternating series test. $x = -3 \implies \sum_{k=1}^{\infty} \frac{(-1)^k (-3)^k}{k3^k} = \sum_{k=1}^{\infty} \frac{3^k}{x^{3k}} = \sum_{k=1}^{\infty} \frac{1}{k}$ by *k*th term test.

If we have $\sum_{k=0}^{\infty} c_k x^k$, then $\frac{d}{dx} \left(\sum_{k=0}^{\infty} c_k x^k \right) = \sum_{k=1}^{\infty} \frac{d}{dx} (c_k x^k) = \sum_{k=1}^{\infty} k c_k x^{k-1}$. Note here that k = 1.

Theorem 39.9 (Thm 9.41) Let $f(x) = \sum_{k=0}^{\infty} c_k x^k$ with r > 0. Then $f'(x) = \sum_{k=1}^{\infty} k c_k x^{k-1}$ has radius r_1 , and $r_1 = r$.

Proof. First, show $r_1 \leq r$. Let 0 < |t| < r. Show $|t| < r_1$. There is s with |t| < |s| < r. Then $\sum_{k=0}^{\infty} c_k s^k$ converges (by Thm 9.40) Then there is an $M < \infty$ with $|c_k s^k| \leq M$ for all $k \geq 0$.

Then
$$\sum_{k=1}^{\infty} |c_k k t^{k-1}| = \frac{1}{|s|} \sum_{k=1}^{\infty} |k c_k s^k| \left| \frac{t}{s} \right|^{k-1} \le \sum_{k=1}^{\infty} k M \left| \frac{t}{s} \right|^{k-1}$$
.

Ratio test:

$$\Big|\frac{(k+1)M(t/s)^k}{kM(t/s)^{k-1}}\Big| = \frac{k+1}{k}\Big|\frac{t}{s}\Big| \to \Big|\frac{t}{s}\Big| < 1$$

So the series $\sum_{k=1}^{\infty} |c_k k t^{k-1}|$ converges, so $\sum_{k=1}^{\infty} c_k k t^{k-1}$ converges absolutely.

So $|t| < r \implies |t| < r_1$, so $r \le r_1$. Proof that $r_1 \leq r$ is in lecture notes, so $r_1 = r$.

Note 39.10
$$\begin{split} I_1 &\subseteq I, \text{ and } I_1 \text{ may not be } I. \\ \text{Example: } f(x) &= \sum_{k=1}^{\infty} \frac{x^k}{k}. \text{ Ratio test: } \left| \frac{x^{k+1}/(k+1)}{x^k k} \right| = |x| \frac{k}{k+1} \to |x|. \text{ Then } r = 1, I = [-1, 1). \\ f'(x) &= \sum_{k=1}^{\infty} x^{k-1}, \text{ so } r = 1, I_1 = (-1, 1), \text{ so } I_1 \subseteq I, \text{ but } I_1 \neq I. \end{split}$$