39 Power Series

Suppose $\sum_{k=1}^{\infty} a_{k}$ converges. What do we know about $\left\{a_{k}\right\}_{k=1}^{\infty}$? $\lim _{k \rightarrow \infty} a_{k}=0$ and $\left\{a_{k}\right\}_{k=1}^{\infty}$ bounded.
Note 39.1
Recall $\sum_{k=1}^{\infty} a_{k}$ converges absolutely if $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges, $\sum_{k=1}^{\infty} a_{k}$ converges conditionally if $\sum_{k=1}^{\infty}\left|a_{k}\right|$ diverges. (Ex. $\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k}$)

Definition 39.2
Let $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$. The domain of of f is all x such that $\sum_{k=0}^{\infty} c_{k} x^{k}$ converges. We say the power series expansion of f is $\sum_{k=0}^{\infty} c_{k} x^{k}$ (about $x=0$).

Theorem 39.3 (Thm 9.40)
If $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ converges for $x=s$, then is conveges absolutely for $|x|<|s|$.

Proof. If $f(s)=\sum_{k=0}^{\infty} c_{k} s^{k}$ converges, then $\lim _{k \rightarrow \infty} c_{k} s^{k}=0$, so there is an $M<\infty$ so $\left|c_{k} s^{k}\right| \leq M$ for $k \geq 0$. Let $|x|<|s|$. Then $\sum_{k=0}^{\infty}\left|c_{k} x^{k}\right|=\sum_{k=0}^{\infty}\left|c_{k}\right|\left|s^{k}\right|\left|\frac{x}{s}\right|^{k} \leq \sum_{k=0}^{\infty} M\left|\frac{x}{s}\right|^{k}=M \sum_{k=0}^{\infty}\left|\frac{x}{s}\right|^{k}$ which converges by the geometric series test.

So $\sum_{k=0}^{\infty} c_{k} x^{k}$ converges by the comparison test, and converges absolutely.

Corollary 39.4

Each power series $\sum_{k=0}^{\infty} c_{k} x^{k}$ converges in one of the 3 ways:

1. Converges only for $x=0$. Ex: $\sum_{k=0}^{\infty} x^{k}$
2. Converges for all x. Ex: $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$
3. Converges for all $|x|<r$. Diverges for all $|x|>r$, where $0<r<\infty$.

Definition 39.5

If $\sum c_{k} x^{k}$ converges for $|x|<r$, diverges for $|x|>r$, then r is the radius of convergence of the power series.

So, for $1, r=0$, for $2, r=\infty$.
Definition 39.6
The interval of convergence of $\sum_{k=0}^{\infty} c_{k} x^{k}$, denoted by I, is all x for which the power series converges.

Possibilities: $I=\{0\}, I=(-\infty, \infty), I=[-r, r],[-r, r),(-r, r],(-r, r)$, with $0<r<\infty$.

Example 39.7

$\sum_{k=0}^{\infty} \frac{x^{k}}{2^{k}}$
By ratio test: $\left|\frac{x^{k+1} / 2^{k+1}}{x^{k} / 2^{k}}\right|=\frac{|x|}{2}<1$ if $|x|<2,>1$ if $|x|>2$, so $r=2$.
For $I: x=2 \Longrightarrow \sum_{k=0}^{\infty} \frac{2^{k}}{2^{k}}=\sum_{k=0}^{\infty} 1$ diverges by the k th term test. $x=-2 \Longrightarrow \sum_{k=0}^{\infty} \frac{(-2)^{k}}{2^{k}}=\sum_{k=0}^{\infty}(-1)^{k}$ diverges by the k th term test. So, $I=(-2,2)$.

Example 39.8

$\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{k}}{k 3^{k}}$. By the ratio test:

$$
\left|\frac{(-1)^{k+1} x^{k+1} /(k+1) e^{k+1}}{(-1) x^{k} / x 3^{k}}\right|=\frac{|x|}{3} \frac{k}{k+1} \rightarrow \frac{|x|}{3}
$$

So for the same reasons as before, $r=3$.
For $I: x=3 \Longrightarrow \sum_{k=1}^{\infty} \frac{(-1)^{k} 3^{k}}{k 3^{k}}=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}$ conerges by alternating series test.
$x=-3 \Longrightarrow \sum \frac{(-1)^{k}(-3)^{k}}{k 3^{k}}=\sum \frac{3^{k}}{x 3^{k}}=\sum \frac{1}{k}$ by k th term test.
$I=(-3,3]$.

If we have $\sum_{k=0}^{\infty} c_{k} x^{k}$, then $\frac{d}{d x}\left(\sum_{k=0}^{\infty} c_{k} x^{k}\right)=\sum_{k=1}^{\infty} \frac{d}{d x}\left(c_{k} x^{k}\right)=\sum_{k=1}^{\infty} k c_{k} x^{k-1}$. Note here that $k=1$.
Theorem 39.9 (Thm 9.41)
Let $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ with $r>0$. Then $f^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k} x^{k-1}$ has radius r_{1}, and $r_{1}=r$.

Proof. First, show $r_{1} \leq r$. Let $0<|t|<r$. Show $|t|<r_{1}$.
There is s with $|t|<|s|<r$. Then $\sum_{k=0}^{\infty} c_{k} s^{k}$ converges (by Thm 9.40)
Then there is an $M<\infty$ with $\left|c_{k} s^{k}\right| \leq M$ for all $k \geq 0$.
Then $\sum_{k=1}^{\infty}\left|c_{k} k t^{k-1}\right|=\frac{1}{|s|} \sum_{k=1}^{\infty}\left|k c_{k} s^{k}\right|\left|\frac{t}{s}\right|^{k-1} \leq \sum_{k=1}^{\infty} k M\left|\frac{t}{s}\right|^{k-1}$.
Ratio test:

$$
\left|\frac{(k+1) M(t / s)^{k}}{k M(t / s)^{k-1}}\right|=\frac{k+1}{k}\left|\frac{t}{s}\right| \rightarrow\left|\frac{t}{s}\right|<1
$$

So the series $\sum_{k=1}^{\infty}\left|c_{k} k t^{k-1}\right|$ converges, so $\sum_{k=1}^{\infty} c_{k} k t^{k-1}$ converges absolutely.
So $|t|<r \Longrightarrow|t|<r_{1}$, so $r \leq r_{1}$.
Proof that $r_{1} \leq r$ is in lecture notes, so $r_{1}=r$.

Note 39.10
$I_{1} \subseteq I$, and I_{1} may not be I.
Example: $f(x)=\sum_{k=1}^{\infty} \frac{x^{k}}{k}$. Ratio test: $\left|\frac{x^{k+1} /(k+1)}{x^{k} k}\right|=|x| \frac{k}{k+1} \rightarrow|x|$. Then $r=1, I=[-1,1)$.

$$
f^{\prime}(x)=\sum_{k=1}^{\infty} x^{k-1}, \text { so } r=1, I_{1}=(-1,1), \text { so } I_{1} \subseteq I, \text { but } I_{1} \neq I
$$

