38 Uniformly Cauchy

Definition 38.1

If $f_n: D \to \mathbb{R}$ for $n \ge 1$, then the sequence $\{f_n\}_{n=1}^{\infty}$ is **uniformly Cauchy** if for any $\epsilon > 0$, there is N_{ϵ} so $m, n \ge N_{\epsilon} \implies |f_m(x) - f_n(x)| < \epsilon$, for all x in D.

Theorem 38.2 (Thm 9.29)

Let $f: D \to \mathbb{R}$ for $n \ge 1$. Then $\{f_n\}_{n=1}^{\infty}$ converges uniformly to a function $f: D \to \mathbb{R}$ if and only if $\{f_n\}_{n=1}^{\infty}$ is uniformly Cauchy.

Proof. (\implies) Assume $f_n \to f$ uniformly on D. Then for any $\epsilon > 0$, there is N_{ϵ} such that if $n \ge N_{\epsilon}$, then $|f_n(x) - f(x)| < \frac{\epsilon}{2}$, for all x in D.

Then let $m, n \ge N_{\epsilon}$. Then $|f_m(x) - f_n(x)| \le |f_m(x) - f(x)| + |f(x) - f_n(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$, for all x in D. Then $\{f_n\}_{n=1}^{\infty}$ is uniformly Cauchy.

 (\Leftarrow) Longer proof. We will not prove it here.

Example 38.3

Let $f_n(x) = \frac{1}{n^{1/2}} \sin(nx)$ for -1 < x < 1, and $n \ge 1$. Then $|f_n(x)| = \left|\frac{1}{n^{1/2}} \sin(nx)\right| \le \frac{1}{n^{1/2} \to 0}$ Let f(x) = 0 for -1 < x < 1, then $f_n \to f$ uniformly to f on (-1, 1). $|f_n(x) - f(x)| = |f_n(x)| \le \frac{1}{n^{1/2}} \to 0$ Note: $f'_n(x) = \frac{1}{n^{1/2}} n \cos(nx) = n^{1/2} \cos nx$ $|f'_n(x)| = |n^{1/2} \cos nx|$

for $n \ge 1$, is unbounded for any x in (-1, 1).

Theorem 38.4 (Thm 9.34)

Let I be an open interval, let $f_n: I \to \mathbb{R}$ be continuously differentiable on I. Suppose:

- 1. ${f_n}_{n=1}^{\infty}$ converges pointwise to f on I.
- 2. $\{f'_n\}_{n=1}^{\infty}$ is uniformly Cauchy on *I*.

Then $f: I \to \mathbb{R}$ is continuously differentiable, and $\lim_{n\to\infty} f'_n(x) = f'(x)$ for x in I.

Example 38.5 (Example in Section 9.6) Let f_0 be a tent function on [0, 1]: $f_0(0) = 0$, $f_0(\frac{1}{2}) = \frac{1}{2}$, $f_0(1) = 0$ f_0 linear between $0, \frac{1}{2}$ and between $\frac{1}{2}, 1$. f'(x) = 1, $0 < x < \frac{1}{2}$, f'(x) = -1, $\frac{1}{2} < x < 1$.

Let f_1 have 2 tents on [0, 1]. For $n \ge 1$, let f_n on [0, 1] have 2^n identical tents, one on each subinterval $\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$. $\max f_n(x) = \frac{1}{2^{n+1}}$. $\min f_n(x) = 0$. Note f_n is continuous on [0, 1], for $n \ge 1$.

 $s_n = \sum_{k=1}^n f_k$ is a continuous function. Then $\{s_n\}_{n=1}^{\infty}$ converges uniformly to a function f. Then f is continuous on [0,1]. (Note $s_{n+1} - s_n = f_{n+1}$, and $\max f_{n+1} = \frac{1}{2^{n+2}}$)

Г		
L		

Example 38.6 (Exercise 9.4.2) Let $f_n(x) = nxe^{-nx^2}$, $n \ge 1$, $0 \le x \le 1$. Show $f_n \to f$ pointwise but $\int_0^1 f_n \not\to \int_0^1 f$.

1st part: Use l'Hopital's rule:

$$\lim_{n \to \infty} nx e^{-nx^2} = \lim_{n \to \infty} \frac{nx}{e^{nx^2}} = \lim_{t \to \infty} \frac{tx}{e^{tx^2}} = \lim_{t \to \infty} \frac{x}{x^2 e^{tx^2}} = 0$$

Let f(x) = 0. Then $f_n \to f$ pointwise on [0, 1] since $f_n(0) = 0$.