37 Uniform Convergence of Functions

Example 37.1 (Exercise 9.2.1)

$$f_n(x) = \frac{1 - |x|^n}{1 + |x|^n} \to \begin{cases} 1 & |x| < 1\\ 0 & |x| = 1\\ -1 & |x| > 1 \end{cases} \quad \text{pointwise}$$

Note that f_n is continuous for all $n \ge 1$, but f is not continuous.

Definition 37.2 Let $f_n: D \to \mathbb{R}$ and $f: D \to \mathbb{R}$. Then $\{f_n\}_{n=1}^{\infty}$ converges uniformly (on *D*) to *f* if for any arbitrary $\epsilon > 0$, there is an N_{ϵ} so that if $n \ge N_{\epsilon}$, then $|f_n(x) - f(x)| < \epsilon$ for all *x* in *D*.

Suppose $f_n \to f$ uniformly on D. Pick any x_0 in D. Then for any x_0 in D, $f_n(x_0) \to f(x_0)$. Thus $f_n \to f$ uniformly on $D \implies f_n \to f$ pointwise on D.

Theorem 37.3 (Thm 9.31 **) Let $f_n : D \to \mathbb{R}$ be continuous on D for $n \ge 1$. Let $f_n \to f$ uniformly on D. Then f is continuous.

Proof. Let $\epsilon > 0$ be arbitrary. Since $f_n \to f$ uniformly, there is N_{ϵ} so $n \ge N_{\epsilon} \implies |f_n(x) - f(x)| < \frac{\epsilon}{3}$ for x in D.

Pick an arbitrary x_0 in D. We will show f is continuous at x_0 .

Note that $f_{N_{\epsilon}}$ is continuous at x_0 . So, there is $\delta > 0$ so that $|x - x_0| < \delta$ and x in $D \implies |f_{N_{\epsilon}}(x) - f_{N_{\epsilon}}(x_0)| < \frac{\epsilon}{3}$.

Then, $|f(x) - f(x_0)| \le |f(x) - f_{N_{\epsilon}}(x)| + |f_{N_{\epsilon}}(x) - f_{N_{\epsilon}}(x_0)| + |f_{N_{\epsilon}}(x_0) - f(x_0)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} < \epsilon.$

So, f is continuous at x_0 , so it is continuous.

Example 37.4 Let $g_n(x) = x^n$ for $0 \le x \le \frac{1}{2}$ and $n \ge 1$. Find f so $f_n \to f$ uniformly on $[0, \frac{1}{2}]$.

Solution: Note: $0 \le x \le \frac{1}{2} \implies |g_n(x)| = |x^n| \le \frac{1}{2^n} \to 0$. Let g(x) = 0 for $0 \le x \le \frac{1}{2}$. Then $|g_n(x) - g(x)| = |g_n(x)| \le \frac{1}{2^n} \to 0$. So $g_n \to g$ uniformly on $[0, \frac{1}{2}]$.

Example 37.5 Let $f_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$. Let $f(x) = e^x$, and let $0 \le x \le 1$. Show $f_n \to f$ uniformly on [0, 1].

Solution: Note: $|f(x) - f_n(x)| = |f(x) - p_n(x)| = |R_n(x)| \le \frac{|f^{(n+1)}(c_x)|}{(n+1)!} |x - 0|^{n+1}.$

$$\frac{|f^{(n+1)}(c_x)|}{(n+1)!}|x-0|^{n+1} \le \frac{e^{c_x}}{(n+1)!} \le \frac{e^1}{(n+1)!} \to 0$$

So $|f(x) - f_n(x)| \le \frac{e}{(n+1)!} \to 0$ for $0 \le x \le 1$. So $f_n \to f$ uniformly on [0, 1].

Guiding Question

Suppose $g_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$, $g(x) = e^x$, for all real x. Then does $g_n \to g$ uniformly on \mathbb{R} ?

Note that here, $|R_n(x)| = \frac{|g^{(n+1)}(c_x)|}{(n+1)!} |x|^{n+1} = \frac{e^{c_x}}{(n+1)!} |x|^{n+1} \to \infty$ as $x \to \infty$ and n not too large. So, no.

Theorem 37.6 (Thm 9.32) Let a < b, f_n integrable on [a, b], $f_n \to f$ uniformly on [a, b]. Then f is integrable and $\int_a^b f_n \to \int_a^b f$.

Proof. Let $\epsilon > 0$. Then $f_n \to f$ uniformly \implies there is an N_{ϵ} so $|f_{N_{\epsilon}}(x) - f(x)| < \frac{\epsilon}{3(b-a)}$. Since $\int_a^b f_{N_{\epsilon}}$ exists, there is a $P = \{a = x_0, \cdots, x_n = b\}$ with

$$|U(f_{N_{\epsilon}}, P) - L(f_{N_{\epsilon}}, P)| < \frac{\epsilon}{3}$$

Also,

and

$$|U(f, P) - U(f_{N_{\epsilon}}, P)| < \frac{\epsilon}{3}$$
$$|L(f, P) - L(f_{N_{\epsilon}}, P)| < \frac{\epsilon}{3}$$

Then,

$$|U(f,P) - L(f,P)| \le |U(f,P) - U(f_{N_{\epsilon}},P)| + |U(f_{N_{\epsilon}},P) - L(f_{N_{\epsilon}},P)| + |L(f,P) - L(f_{N_{\epsilon}},P)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} < \epsilon$$

Thus f is integrable on $[a,b]$ by Archimedes Riemann Theorem, and $\int_{a}^{b} f_{n} \to \int_{a}^{b} f$. \Box