33 Name of Lecture

Theorem 33.1
Let $f: I \rightarrow \mathbb{R}, I$ open interval, with x_{0} in I. Assume $f^{(n)}\left(x_{0}\right)$ exists, for all $n \geq 0$.
If there are $r>0, M>0$ with $\left|f^{(n)}(x)\right| \leq M^{n}$ for all x in I, with $\left|x-x_{0}\right|<r$, and $n \geq 0$, then

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

for all x in I, so

$$
f(x)=\lim _{n \rightarrow \infty} p_{n}(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

Example 33.2

$f(x)=e^{x}, x_{0}=0$ implies

$$
\lim _{n \rightarrow \infty} R_{n}(x)=\lim _{n \rightarrow \infty} \frac{f^{(n+1)}\left(c_{x}\right)}{(n+1)!}(x-0)^{n+1}=\lim _{n \rightarrow \infty} \frac{e^{c_{x}}}{(n+1)!} x^{n+1}=0 \quad \text { for all } x
$$

Suppose $\left|g^{(n)}(x)\right| \leq M^{n} L$ for $n \geq 0$ if $\left|x-x_{0}\right|<r \mid$. Then

$$
\left|R_{n}(x)\right|=\frac{\left|g^{(n+1)}\left(c_{x}\right)\right|}{(n+1)!}\left|x-x_{0}\right|^{n+1} \leq\left|\frac{M^{n+1} L}{(n+1)!}\right|\left|x-x_{0}\right|^{n+1}
$$

Example 33.3

Let $g(x)=e^{2 x}$. Show $\lim _{n \rightarrow \infty} R_{n}(x)=0$ for all x.

Solution: $g^{\prime}(x)=2 e^{2 x}, \cdots$, and $\left|g^{(n+1)}(x)\right|=2^{n+1} e^{2 x}$, so $\left|R_{n}(x)\right| \leq\left|\frac{2^{n+1} e^{2 c_{x}}}{(n+1)!}\right||x|^{n+1} \rightarrow 0$
Let $f(x)=\ln (1+x)$. To find the power series for $\ln (1+x)$ for $-1<x<1$.
Let $0<r<1$. Then $\frac{1}{1-r}=1+r+\cdots+r^{n}+\frac{r^{n+1}}{1-r}=\sum_{k=0}^{n} x^{k}+\frac{r^{n+1}}{1-r}$.
If $x=-r$, then

$$
\frac{1}{1+x}=\sum_{k=0}^{n}(-1)^{k} x^{k}+\frac{(-1)^{n+1} x^{n+1}}{1+x}=p_{n}(x)+R_{n}(x)
$$

Show $\lim _{n \rightarrow \infty} R_{n}(x)=0$. Then

$$
\begin{gathered}
\ln (1+x)=\int_{0}^{x} \frac{1}{1+t} d t=\int_{0}^{x}\left(\sum_{k=0}^{n}(-1)^{k} t^{k}\right)+\frac{(-1)^{n+1} t^{n+1}}{1+t} d t \\
=\sum_{k=0}^{n} \int_{0}^{x}(-1)^{k} t^{k} d t+\int_{0}^{x} \frac{(-1)^{n+1} t^{n+1}}{1+t} d t=\sum_{k=0}^{n}(-1)^{k} \frac{x^{k+1}}{k+1}+(-1)^{n+1} \int_{0}^{x} \frac{t^{n+1}}{1+t} d t
\end{gathered}
$$

Does the right term go to 0 ?
Case 1: $0 \leq x<1(0 \leq t \leq x<1)$. Then

$$
\int_{0}^{x} \frac{t^{n+1}}{1+t} d t \leq \int_{0}^{x} t^{n+1} d t=\frac{x^{n+2}}{n+2} \rightarrow 0
$$

Case 2: $-1<x<0$. Then,

$$
x \leq t \leq 0 \Longrightarrow \frac{1}{1+t} \leq \frac{1}{1+x} \Longrightarrow \int_{0}^{x} \frac{t^{n+1}}{1+t} d t \leq \int_{0}^{x} \frac{t^{n+1}}{1+x} d t=\frac{1}{1+x} \frac{x^{n+2}}{n+2} \rightarrow 0
$$

Thus,

$$
\ln (1+x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k+1}}{k+1}
$$

33.1 Section 8.6

Let

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Show $f^{(n)}(0)=0$ for $n=0,1,2$.
As $|x| \rightarrow \infty$, then $e^{-1 / x^{2}} \rightarrow e^{0}=1$, and the graph of f is symmetric with respect to the y axis.
Steps, 1. For constant $c>0, e^{c}=1+c+\frac{c^{2}}{2!}+\cdots+\frac{c^{n}}{n!}+\cdots>\frac{c^{n}}{n!}$.
2. Let $x \neq 0, n>0$. Then $e^{1 / x^{2}}>\frac{\left(1 / x^{2}\right)^{n}}{n!}=\frac{1}{n!x^{2 n}}$, so $e^{-1 / x^{2}}<n!x^{2 n}$.
3. If $k<2 n$, then $\lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{|x|^{k}}<\lim _{x \rightarrow 0} \frac{n!x^{2 n}}{|x|^{k}}=\lim _{x \rightarrow 0} n!x^{2 n-k}=0$.
4. Let $k=1, n=1$, so $k<2 n$. Then $\left|f^{\prime}(0)\right|=\lim _{x \rightarrow 0}\left|\frac{f(x)-f(0)}{x-0}\right|=\lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{|x|}=0$ by 3 .
5. Use chain rule to find $f^{\prime}(x), x \neq 0 . f^{\prime}(x)=\frac{2}{x^{3}} e^{-1 / x^{2}}$.
6. Let $k=4, n=3$ in 3: Then $f^{\prime \prime}(0)=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{x}=\lim _{x \rightarrow 0} \frac{2}{x^{4}} e^{-1 / x^{2}}=2 \lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{x^{4}}$ $\leq 2 \lim _{x \rightarrow 0} 3!|x|^{6-4}=0$
7. One can similarly show that $f^{(k)}(0)=0$ for $k \geq 0$. Then for every taylor polynomial p_{n} of f about 0 is just $p_{n}(x)=0$ for all x.

