32 Lagrange Remainder Theorem

Lagrange Remainder Theorem: Let $f^{(n+1)}(x)$ exist on open I, let x_{0} be in I. Then,

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}\left(c_{x}\right)}{(n+1)!}\left(x-x_{0}\right)^{n+1}=p_{n}(x)+R_{n}(x)
$$

for x in I, c_{x} between x and x_{0}.
Example 32.1 (Exercise 8.2.11)
Assume $f^{(n+1)}$ is continuous on open interval I, and x_{0} is in I, and $f^{(k)}\left(x_{0}\right)=0$ for $k=1, \cdots, n$ and $f^{(n+1)}\left(x_{0}\right) \neq 0$.

1. If $n+1$ is even and $f^{(n+1)}\left(x_{0}\right)>0$, then $R_{n}(x)=\frac{f^{(n+1)}\left(c_{x}\right)}{(n+1)!}\left(x-x_{0}\right)^{n+1} \geq 0$, so $f(x)=f\left(x_{0}\right)+R_{n}(x) \geq$ $f\left(x_{0}\right)$. for x near x_{0}. Then x_{0} is a local minimizer.
2. If $n+1$ is even and $f^{(n+1)}\left(x_{0}\right)<0$, then same problem.
3. If $n+1$ is odd, then $R_{n}(x)$ changes sign at x_{0}.

Lemma 32.2

Let c be real. Then $\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0$, with $c \neq 0$.

Proof. Let $a_{n}=\frac{c^{n}}{n!}$ for $n \geq 1$. Then $\frac{a_{n+1}}{a_{n}}=\frac{|c|}{n+1} \rightarrow 0$.

Theorem 32.3 (Thm 8.14)
Let $f^{(n)}(x)$ for $n \geq 1$ exist on open interval I, with x_{0} in I. If there is an $r>0$ and an $M<\infty$ so that for x such that $\left|x-x_{0}\right|<r$, we have

$$
\left|f^{(n)}(x)\right| \leq M^{n}
$$

for all x in I and all $n \geq 0$, then $\lim _{n \rightarrow \infty} R_{n}(x)=0$, so

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

Proof. By Lagrange Remainder Theorem, $\left|R_{n}(x)\right|=\frac{\left|f^{(n+1)}\left(c_{x}\right)\right|}{(n+1)!}\left|x-x_{0}\right|^{n+1}$.
If $\left|x-x_{0}\right|<r$ and x in I, then by hypothesis,

$$
\left|R_{n}(x)\right| \leq \frac{M^{n+1} r^{n+1}}{(n+1)!} \rightarrow 0
$$

Then

$$
f(x)=\lim _{n \rightarrow \infty} f(x)=\lim _{n \rightarrow \infty} p_{n}(x)+\lim _{n \rightarrow \infty} R_{n}(x)=\lim _{n \rightarrow \infty} p_{n}(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

Example 32.4

$f(x)=e^{x}, x_{0}=0, I=(-\infty, \infty)$. If $r>0$ is arbitrary, and $M=\max \left(1, e^{r}\right)$, then

$$
|x|<r \Longrightarrow\left|f^{(n+1)}\left(c_{x}\right)\right|=e^{c_{x}} \leq e^{r} \leq M \leq M^{n+1}
$$

So, by Thm 8.14,

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

Example 32.5

$g(x)=\sin x, x_{0}=0$. Then $\left|g^{(n+1)}(x)\right| \leq 1$, for all x, all $n \geq 0$.
So by theorem 8.14,

$$
\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}
$$

Example 32.6

$f(x)=\frac{1}{1-x}, x_{0}=0 \Longrightarrow f^{\prime}(x)=\frac{1}{(1-x)^{2}}, f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}}, f^{(n)}(x)=\frac{k!}{(1-x)^{k+1}}$.
Then $f^{(k)}(0)=k!$. Thus, $\frac{1}{1-x}=\sum_{k=0}^{n} \frac{k!x^{k}}{k!}=\sum_{k=0}^{n} x^{k}=1+x+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x} \rightarrow \frac{1}{1-x}$ for $|x|<1$.

