3 Sequences

3.1 Sequences

Definition 3.1

A sequence is a function f defined on all integers $n \geq n_{0}$ (usually $n_{0}=0$ or 1).
We write $\left\{a_{n}\right\}_{n=n_{0}}^{\infty}$ where $f(n)=a_{n}$, for $n \geq n_{0}$.
Often, we just write $\left\{a_{n}\right\}$, if the n_{0} is clear.
Note that n in a_{n} is an index.
The indices of $\left\{a_{n}\right\}_{n=3}^{\infty}$ are $3,4,5, \cdots$.

Example 3.2

```
{(-1)n}\mp@subsup{}}{n=1}{\infty}:-1,1,-1,1,
{1-\frac{1}{n}\mp@subsup{}}{n=1}{\infty}:0,\frac{1}{2},\frac{2}{3},\cdots
{\mp@subsup{e}{}{n}\mp@subsup{}}{n=1}{\infty}
```


Definition 3.3

A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is recursive or inductive if a_{1} is given, and $a_{n+1}=f\left(a_{n}\right)$ for $n \geq 1$.

Example 3.4

Suppose we have the sequence $a_{1}=\sqrt{2}, a_{2}=\sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \cdots$
Here we can see that, $a_{2}=\sqrt{2+a_{1}}$, and $a_{3}=\sqrt{2+a_{2}}$
So we can define the sequence as, $a_{n+1}=\sqrt{2+a_{n}}$ for $n \geq 1$.

Definition 3.5

$\left\{a_{n}\right\}_{n=n_{0}}^{\infty}$ converges to number L if for each $\epsilon>0$, there is N^{*} or N_{ϵ} so that $n \geq N^{*} \Longrightarrow\left|a_{n}-L\right|<\epsilon$.
Then, we write $\lim _{n \rightarrow \infty} a_{n}=L$, and often we will write $a_{n} \rightarrow L$.
Otherwise, if no such L exists, then $\left\{a_{n}\right\}_{n=n_{0}}^{\infty}$ diverges.
Note that there are two types of divergence.
$\left\{(-1)^{n}\right\}_{n=1}^{\infty}$ "wobbles".
$\left\{n^{2}\right\}_{n=1}^{\infty}$. Then, $\lim _{n \rightarrow \infty} n^{2}=\infty$.

Note 3.6

1. $\lim _{n \rightarrow \infty} a_{n}=a$ if and only if $\lim _{n \rightarrow \infty}\left(a_{n}-a\right)=0$
2. Proposition 2.6: $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ (the sequence $\left\{\frac{1}{n}\right\}$ converges to 0)

Proof. To show that $\left\{\frac{1}{n}\right\}$ converges to 0 , we must find a n_{ϵ} such that for any $\epsilon, n \geq n_{\epsilon}$,

$$
\left|\frac{1}{n}-0\right|<\epsilon \Longrightarrow \frac{1}{n}<\epsilon
$$

Let $\epsilon>0$ be arbitrary. By the Archimedean Property, there is $n_{\epsilon}>0$ such that $0<\frac{1}{n_{\epsilon}}<\epsilon$.
Then, $n \geq n_{\epsilon} \Longrightarrow 0<\frac{1}{n}<\frac{1}{n_{\epsilon}}<\epsilon$.
Thus, $\left\{\frac{1}{n}\right\}$ converges to 0 , and so $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
3. $\lim _{n \rightarrow \infty} a_{n}=\infty$ if for any number $M>0$, there is an n_{M} so that $n \geq n_{M} \Longrightarrow a_{n}>M$.

3.2 Properties of convergence

Property 3.7 (Comparison Property - Lemma 2.9)
Assume that $a_{n} \rightarrow a$, and $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a sequence, and b is a number.
If $c \geq 0$ is a number so that $\left|b_{n}-b\right| \leq c\left|a_{n}-a\right|$, for all $n \geq n^{*}$, then $b_{n} \rightarrow b$.

Proof. Note $n \geq n^{*} \Longrightarrow\left|b_{n}-b\right| \leq c\left|a_{n}-a\right| \xrightarrow{n} 0$. From this, it follows that $b_{n}-b \rightarrow 0$, and so $b_{n} \rightarrow b$, meaning the series converges.

Example 3.8

Show that $\lim _{n \rightarrow \infty} \frac{1}{n^{2}+n}=0$.
Solution: for $n \geq 1,0<\frac{1}{n^{2}+n} \leq \frac{1}{n} \xrightarrow{n} 0$ by Prop 2.6. So by the Comparison Property, $\frac{1}{n^{2}+n} \xrightarrow{n} 0$

Definition 3.9

$\left\{a_{n}\right\}_{n=n_{0}}^{\infty}$ is bounded if there is some number M so that $\left|a_{n}\right| \leq M$ for all n.

Theorem 3.10 (Theorem $2.18^{* *}$)
If $\left\{a_{n}\right\}_{n=n_{0}}^{\infty}$ converges, then it is bounded.

Proof. Let $\epsilon>0$ be arbitrary. If $a_{n} \rightarrow a$, then there is an N^{*} so that $n \geq N^{*} \Longrightarrow\left|a_{n}-a\right|<\epsilon$.
Let $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \cdots,\left|a_{N^{*}}\right|,|a|+\epsilon\right\}$. Then we have that $\left|a_{n}\right| \leq M$ for all $n \geq 0$.

Theorem 3.11 (Sum Rule)
If $a_{n} \rightarrow a, b_{n} \rightarrow b$, then $a_{n}+b_{n} \rightarrow a+b$.

Proof. $\left|a_{n}+b_{n}-(a+b)\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right| \rightarrow 0$, because $\left|a_{n}-a\right| \rightarrow 0$ and $\left|b_{n}-b\right| \rightarrow 0$.
Alternatively, we know that there must be some indices n_{1}, n_{2} for sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ respectively such that $\left|a_{n}-a\right|<\frac{\epsilon}{2}$ for $n \geq n_{1}$, and $\left|b_{n}-b\right|<\frac{\epsilon}{2}$ for $n \geq n_{2}$. So, we can take $m=\max \left\{n_{1}, n_{2}\right\}$ as our index such that for all $n \geq m$,

$$
\left|a_{n}+b_{n}-(a+b)\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

And thus $\left\{a_{n}+b_{n}\right\}$ converges to $a+b$.

```
Theorem 3.12 (Product Rule)
```

If $a_{n} \rightarrow a, b_{n} \rightarrow b$, then $a_{n} b_{n} \rightarrow a b$.

Proof. $\lim _{n \rightarrow \infty} b_{n}=b$ implies, by Thm 2.18, $\left|b_{n}\right| \leq M$ for all $n \geq n_{0}$.
Then, $\left|a_{n} b_{n}-a b\right| \leq\left|a_{n} b_{n}-a b_{n}\right|+\left|a b_{n}-a b\right|=\left|a_{n}-a\right|\left|b_{n}\right|+|a|\left|b_{n}-b\right| \leq M\left|a_{n}-a\right|+|a|\left|b_{n}-b\right| \rightarrow 0$, so $a_{n} b_{n} \rightarrow a b$, where the first inequality is created by the triangle inequality and adding an extra $\left(a b_{n}-a b_{n}\right)$.

Theorem 3.13 (Quotient Rule)

If $a_{n} \rightarrow a, b_{n} \rightarrow b$, then if $b \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{a}{b}$.

Note 3.14
Suppose we want to prove $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-\sqrt{n^{2}}\right)$ exists and find it.
We would multiply by the conjugate as follows:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-\sqrt{n^{2}}\right) & =\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-\sqrt{n^{2}}\right)\left(\frac{\sqrt{n^{2}+n}+\sqrt{n^{2}}}{\sqrt{n^{2}+n}+\sqrt{n^{2}}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{\left(n^{2}+n\right)-n^{2}}{\sqrt{n^{2}+n}+\sqrt{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}}+\sqrt{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{n}{n+n} \\
& =\frac{1}{2}
\end{aligned}
$$

