
Lecture 3: Sequences

3 Sequences

3.1 Sequences

Definition 3.1
A sequence is a function f defined on all integers n ≥ n0 (usually n0 = 0 or 1).
We write {an}∞n=n0

where f(n) = an, for n ≥ n0.
Often, we just write {an}, if the n0 is clear.

Note that n in an is an index.
The indices of {an}∞n=3 are 3, 4, 5, · · · .

Example 3.2
{(−1)n}∞n=1: −1, 1,−1, 1, · · ·
{1− 1

n}
∞
n=1: 0, 1

2 ,
2
3 , · · ·

{en}∞n=1

Definition 3.3
A sequence {an}∞n=1 is recursive or inductive if a1 is given, and an+1 = f(an) for n ≥ 1.

Example 3.4

Suppose we have the sequence a1 =
√
2, a2 =

√
2 +

√
2,

√
2 +

√
2 +

√
2, · · ·

Here we can see that, a2 =
√
2 + a1, and a3 =

√
2 + a2

So we can define the sequence as, an+1 =
√
2 + an for n ≥ 1.

Definition 3.5
{an}∞n=n0

converges to number L if for each ϵ > 0, there is N∗ or Nϵ so that n ≥ N∗ =⇒ |an − L| < ϵ.
Then, we write limn→∞ an = L, and often we will write an → L.

Otherwise, if no such L exists, then {an}∞n=n0
diverges.

Note that there are two types of divergence.
{(−1)n}∞n=1 "wobbles".
{n2}∞n=1. Then, limn→∞ n2 = ∞.

Note 3.6

1. limn→∞ an = a if and only if limn→∞(an − a) = 0

2. Proposition 2.6: limn→∞
1
n = 0 (the sequence { 1

n} converges to 0)

Proof. To show that { 1
n} converges to 0, we must find a nϵ such that for any ϵ, n ≥ nϵ,∣∣∣∣ 1n − 0

∣∣∣∣ < ϵ =⇒ 1

n
< ϵ

Let ϵ > 0 be arbitrary. By the Archimedean Property, there is nϵ > 0 such that 0 < 1
nϵ

< ϵ.
Then, n ≥ nϵ =⇒ 0 < 1

n < 1
nϵ

< ϵ.
Thus, { 1

n} converges to 0, and so limn→∞
1
n = 0.

3. limn→∞ an = ∞ if for any number M > 0, there is an nM so that n ≥ nM =⇒ an > M .

3.2 Properties of convergence
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Lecture 3: Sequences

Property 3.7 (Comparison Property - Lemma 2.9)
Assume that an → a, and {bn}∞n=1 is a sequence, and b is a number.
If c ≥ 0 is a number so that |bn − b| ≤ c|an − a|, for all n ≥ n∗, then bn → b.

Proof. Note n ≥ n∗ =⇒ |bn− b| ≤ c|an−a| n→ 0. From this, it follows that bn− b → 0, and so bn → b, meaning
the series converges.

Example 3.8
Show that limn→∞

1
n2+n = 0.

Solution: for n ≥ 1, 0 < 1
n2+n ≤ 1

n

n→ 0 by Prop 2.6. So by the Comparison Property, 1
n2+n

n→ 0

Definition 3.9
{an}∞n=n0

is bounded if there is some number M so that |an| ≤ M for all n.

Theorem 3.10 (Theorem 2.18 **)
If {an}∞n=n0

converges, then it is bounded.

Proof. Let ϵ > 0 be arbitrary. If an → a, then there is an N∗ so that n ≥ N∗ =⇒ |an − a| < ϵ.
Let M = max{|a1|, |a2|, · · · , |aN∗ |, |a|+ ϵ}. Then we have that |an| ≤ M for all n ≥ 0.

Theorem 3.11 (Sum Rule)
If an → a, bn → b, then an + bn → a+ b.

Proof. |an + bn − (a+ b)| ≤ |an − a|+ |bn − b| → 0, because |an − a| → 0 and |bn − b| → 0.

Alternatively, we know that there must be some indices n1, n2 for sequences {an}, {bn} respectively such
that |an − a| < ϵ

2 for n ≥ n1, and |bn − b| < ϵ
2 for n ≥ n2. So, we can take m = max{n1, n2} as our index such

that for all n ≥ m,
|an + bn − (a+ b)| ≤ |an − a|+ |bn − b| < ϵ

2
+

ϵ

2
= ϵ

And thus {an + bn} converges to a+ b.

Theorem 3.12 (Product Rule)
If an → a, bn → b, then anbn → ab.

Proof. limn→∞ bn = b implies, by Thm 2.18, |bn| ≤ M for all n ≥ n0.
Then, |anbn − ab| ≤ |anbn − abn| + |abn − ab| = |an − a||bn| + |a||bn − b| ≤ M |an − a| + |a||bn − b| → 0, so
anbn → ab, where the first inequality is created by the triangle inequality and adding an extra (abn − abn).

Theorem 3.13 (Quotient Rule)
If an → a, bn → b, then if b ̸= 0, then an

bn
→ a

b .
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Lecture 3: Sequences

Note 3.14
Suppose we want to prove limn→∞(

√
n2 + n−

√
n2) exists and find it.

We would multiply by the conjugate as follows:

lim
n→∞

(
√
n2 + n−

√
n2) = lim

n→∞
(
√

n2 + n−
√
n2)

(√
n2 + n+

√
n2

√
n2 + n+

√
n2

)

= lim
n→∞

(n2 + n)− n2

√
n2 + n+

√
n2

= lim
n→∞

n√
n2 +

√
n2

= lim
n→∞

n

n+ n

=
1

2
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