3 Sequences

3.1 Sequences

Definition 3.1

A sequence is a function f defined on all integers $n \ge n_0$ (usually $n_0 = 0$ or 1). We write $\{a_n\}_{n=n_0}^{\infty}$ where $f(n) = a_n$, for $n \ge n_0$. Often, we just write $\{a_n\}$, if the n_0 is clear.

Note that n in a_n is an index. The indices of $\{a_n\}_{n=3}^{\infty}$ are $3, 4, 5, \cdots$.

Example 3.2 $\{(-1)^n\}_{n=1}^{\infty}: -1, 1, -1, 1, \cdots$ $\{1 - \frac{1}{n}\}_{n=1}^{\infty}: 0, \frac{1}{2}, \frac{2}{3}, \cdots$ $\{e^n\}_{n=1}^{\infty}$

Definition 3.3

A sequence $\{a_n\}_{n=1}^{\infty}$ is **recursive** or **inductive** if a_1 is given, and $a_{n+1} = f(a_n)$ for $n \ge 1$.

Example 3.4

Suppose we have the sequence $a_1 = \sqrt{2}$, $a_2 = \sqrt{2 + \sqrt{2}}$, $\sqrt{2 + \sqrt{2 + \sqrt{2}}}$, \cdots Here we can see that, $a_2 = \sqrt{2 + a_1}$, and $a_3 = \sqrt{2 + a_2}$ So we can define the sequence as, $a_{n+1} = \sqrt{2 + a_n}$ for $n \ge 1$.

Definition 3.5

 $\{a_n\}_{n=n_0}^{\infty}$ converges to number L if for each $\epsilon > 0$, there is N^* or N_{ϵ} so that $n \ge N^* \implies |a_n - L| < \epsilon$. Then, we write $\lim_{n\to\infty} a_n = L$, and often we will write $a_n \to L$.

Otherwise, if no such L exists, then $\{a_n\}_{n=n_0}^{\infty}$ diverges.

Note that there are two types of divergence. $\{(-1)^n\}_{n=1}^{\infty}$ "wobbles". $\{n^2\}_{n=1}^{\infty}$. Then, $\lim_{n\to\infty} n^2 = \infty$.

Note 3.6

1. $\lim_{n\to\infty} a_n = a$ if and only if $\lim_{n\to\infty} (a_n - a) = 0$

2. Proposition 2.6: $\lim_{n\to\infty} \frac{1}{n} = 0$ (the sequence $\{\frac{1}{n}\}$ converges to 0)

Proof. To show that $\{\frac{1}{n}\}$ converges to 0, we must find a n_{ϵ} such that for any $\epsilon, n \geq n_{\epsilon}$,

$$\left|\frac{1}{n} - 0\right| < \epsilon \implies \frac{1}{n} < \epsilon$$

Let $\epsilon > 0$ be arbitrary. By the Archimedean Property, there is $n_{\epsilon} > 0$ such that $0 < \frac{1}{n_{\epsilon}} < \epsilon$. Then, $n \ge n_{\epsilon} \implies 0 < \frac{1}{n} < \frac{1}{n_{\epsilon}} < \epsilon$. Thus, $\{\frac{1}{n}\}$ converges to 0, and so $\lim_{n \to \infty} \frac{1}{n} = 0$.

3. $\lim_{n\to\infty} a_n = \infty$ if for any number M > 0, there is an n_M so that $n \ge n_M \implies a_n > M$.

3.2 **Properties of convergence**

Property 3.7 (Comparison Property - Lemma 2.9) Assume that $a_n \to a$, and $\{b_n\}_{n=1}^{\infty}$ is a sequence, and b is a number. If $c \ge 0$ is a number so that $|b_n - b| \le c|a_n - a|$, for all $n \ge n^*$, then $b_n \to b$.

Proof. Note $n \ge n^* \implies |b_n - b| \le c|a_n - a| \xrightarrow{n} 0$. From this, it follows that $b_n - b \to 0$, and so $b_n \to b$, meaning the series converges.

Example 3.8 Show that $\lim_{n\to\infty} \frac{1}{n^2+n} = 0.$

Solution: for $n \ge 1, 0 < \frac{1}{n^2 + n} \le \frac{1}{n} \xrightarrow{n} 0$ by Prop 2.6. So by the Comparison Property, $\frac{1}{n^2 + n} \xrightarrow{n} 0$

Definition 3.9

 $\{a_n\}_{n=n_0}^{\infty}$ is **bounded** if there is some number M so that $|a_n| \leq M$ for all n.

Theorem 3.10 (Theorem 2.18 **) If $\{a_n\}_{n=n_0}^{\infty}$ converges, then it is bounded.

Proof. Let $\epsilon > 0$ be arbitrary. If $a_n \to a$, then there is an N^* so that $n \ge N^* \implies |a_n - a| < \epsilon$. Let $M = \max\{|a_1|, |a_2|, \cdots, |a_{N^*}|, |a| + \epsilon\}$. Then we have that $|a_n| \le M$ for all $n \ge 0$.

Theorem 3.11 (Sum Rule) If $a_n \to a, b_n \to b$, then $a_n + b_n \to a + b$.

Proof. $|a_n + b_n - (a + b)| \le |a_n - a| + |b_n - b| \to 0$, because $|a_n - a| \to 0$ and $|b_n - b| \to 0$.

Alternatively, we know that there must be some indices n_1 , n_2 for sequences $\{a_n\}, \{b_n\}$ respectively such that $|a_n - a| < \frac{\epsilon}{2}$ for $n \ge n_1$, and $|b_n - b| < \frac{\epsilon}{2}$ for $n \ge n_2$. So, we can take $m = \max\{n_1, n_2\}$ as our index such that for all $n \ge m$,

$$|a_n + b_n - (a+b)| \le |a_n - a| + |b_n - b| < \frac{c}{2} + \frac{c}{2} = \epsilon$$

And thus $\{a_n + b_n\}$ converges to a + b.

Theorem 3.12 (Product Rule) If $a_n \rightarrow a$, $b_n \rightarrow b$, then $a_n b_n \rightarrow ab$.

Proof. $\lim_{n\to\infty} b_n = b$ implies, by Thm 2.18, $|b_n| \leq M$ for all $n \geq n_0$. Then, $|a_n b_n - ab| \leq |a_n b_n - ab_n| + |ab_n - ab| = |a_n - a||b_n| + |a||b_n - b| \leq M|a_n - a| + |a||b_n - b| \to 0$, so $a_n b_n \to ab$, where the first inequality is created by the triangle inequality and adding an extra $(ab_n - ab_n)$. \Box

Theorem 3.13 (Quotient Rule) If $a_n \to a$, $b_n \to b$, then if $b \neq 0$, then $\frac{a_n}{b_n} \to \frac{a}{b}$.

Note 3.14

Suppose we want to prove $\lim_{n\to\infty}(\sqrt{n^2+n}-\sqrt{n^2})$ exists and find it. We would multiply by the conjugate as follows:

$$\lim_{n \to \infty} (\sqrt{n^2 + n} - \sqrt{n^2}) = \lim_{n \to \infty} (\sqrt{n^2 + n} - \sqrt{n^2}) \left(\frac{\sqrt{n^2 + n} + \sqrt{n^2}}{\sqrt{n^2 + n} + \sqrt{n^2}} \right)$$
$$= \lim_{n \to \infty} \frac{(n^2 + n) - n^2}{\sqrt{n^2 + n} + \sqrt{n^2}}$$
$$= \lim_{n \to \infty} \frac{n}{\sqrt{n^2} + \sqrt{n^2}}$$
$$= \lim_{n \to \infty} \frac{n}{n + n}$$
$$= \frac{1}{2}$$