26 MATH410 Exam 2 Fall 2022

Example 26.1 (Problem 6.6.4) Let

$$g(x) = f(0) + f'(0)x + \int_0^x (x-t)f''(t) \, dt = f(0) + f'(0)x + x \int_0^x f'' \, dt - \int_0^x tf''(t) \, dt$$

Then

$$g'(x) = f'(0) + \int_0^x f''(t) dt + xf''(x) - xf''(x) = f'(0) + \int_0^x f''(t) dt$$
$$g''(x) = f''(x)$$

for all x. Then by the identity criterion, there is C_1 with $g'(x) = f'(x) + C_1$ for all x.

$$g'(0) = f'(0) + 0 = f'(0) \implies g'(x) = f'(x) \qquad \forall x$$

So, by the identity criterion, there is C_2 so that $g(x) = f(x) + C_2$ for all x.

$$g(0) = f(0) + 0 + 0$$

 So

$$g(x) = f(x) = f(0) + f'(0)x + \int_0^x (x-t)f''(t) dt$$

26.1 MATH410 Exam 2 Fall 2022

1. (a)

$$f(x) = \frac{1}{2+x}$$
$$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{\frac{1}{2+x} - \frac{1}{4}}{x - 2} = \lim_{x \to 2} \frac{4 - (2+x)}{(2+x)4(x-2)} = \lim_{x \to 2} \frac{-1}{4(2+x)} = \frac{-1}{16}$$

1

(b) $g(x) = x^5 + 5x + 3$ for all x. Show g^{-1} exists and find $(g^{-1})'(9)$

Solution: $g'(x) = 5x^4 + 5$ for all x means g is strictly increasing, so g^{-1} exists. Note g(1) = 9. So, $(g^{-1})'(9) = \frac{1}{g'(1)} = \frac{1}{10}$.

2. (a) f has exactly two local maximizers, x_1 and x_2 , with $x_1 < x_2$.

On $[x_1, x_2]$, h has a max and min value by the extreme value theorem. because continuous. Say the minimum value is $h(z^*)$. Then z^* is a local minimizer of h.

(b) Assume $f : \mathbb{R} \to \mathbb{R}$ is differentiable, and M is an mber such that $|f'(x)| \leq M$ for all real x. Prove that f is uniformly continuous.

Solution: note f is uniformly continuous if for any $\{u_n\}, \{v_n\} \subseteq D$, with $|u_n - v_n| \to 0$, then $|f(u_n) - f(v_n)| \to 0$.

Let $\{u_n\}, \{v_n\}$ be arbitrary, and $|u_n - v_n| \to 0$. For each *n*, there is an x_n in interval between u_n and v_n with $\frac{f(u_n) - f(v_n)}{u_n - v_n} = f'(x_n)$ by the mean value theorem.

Then $|f(u_n) - f(v_n)| = |f'(x_n)||u_n - v_n| \le M|u_n - v_n| \to 0$. So, f is uniformly continuous.

3. (a) Let $g:[a,b] \to \mathbb{R}$ be bounded. Prove that $\int_a^b g(x) dx$ exists. Let P be any partition of [a,b]. Then g is bounded, so there is an m so $m \le g(x)$ for all x in [a,b], and there is an M so that $m \le g(x) \le M$ for all x.

Then,
$$m(b-a) \le L(f, P) \le M(b-a)$$
, so $\int_a^b f = \sup_P L(f, P)$ exists.

(b) Suppose $f:[a,b] \to \mathbb{R}$ is integrable and $\int_a^b f = F(b) - F(a)$, and F' = f on (a,b).

Let G be continuous on [a, b], and G' = f on (a, b).

Then by the identity criterion, G(x) = F(x) + C for a < x < b. But F is also continuous on [a, b]. Then G(x) = F(x) for all x in [a, b]. So G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a).

- 4. (a) 4 properties: area is nonnegative, additive property, rectangle property, comparison property.
 - (b) State either 1st or 2nd fundamental theorem, not both.
- 5. (a)

$$\frac{d}{dx}\int_{2}^{x}\frac{3x}{t}dt = \frac{d}{dx}3x\int_{2}^{x}\frac{1}{t}dt = 3\int_{2}^{x}\frac{1}{t}dt + 3x\left(\frac{1}{x}\right) = 2(\ln x - \ln 2) + 3$$