26 MATH410 Exam 2 Fall 2022

Example 26.1 (Problem 6.6.4)
Let

$$
g(x)=f(0)+f^{\prime}(0) x+\int_{0}^{x}(x-t) f^{\prime \prime}(t) d t=f(0)+f^{\prime}(0) x+x \int_{0}^{x} f^{\prime \prime} d t-\int_{0}^{x} t f^{\prime \prime}(t) d t
$$

Then

$$
\begin{gathered}
g^{\prime}(x)=f^{\prime}(0)+\int_{0}^{x} f^{\prime \prime}(t) d t+x f^{\prime \prime}(x)-x f^{\prime \prime}(x)=f^{\prime}(0)+\int_{0}^{x} f^{\prime \prime}(t) d t \\
g^{\prime \prime}(x)=f^{\prime \prime}(x)
\end{gathered}
$$

for all x. Then by the identity criterion, there is C_{1} with $g^{\prime}(x)=f^{\prime}(x)+C_{1}$ for all x.

$$
g^{\prime}(0)=f^{\prime}(0)+0=f^{\prime}(0) \Longrightarrow g^{\prime}(x)=f^{\prime}(x) \quad \forall x
$$

So, by the identity criterion, there is C_{2} so that $g(x)=f(x)+C_{2}$ for all x.

$$
g(0)=f(0)+0+0
$$

So

$$
g(x)=f(x)=f(0)+f^{\prime}(0) x+\int_{0}^{x}(x-t) f^{\prime \prime}(t) d t
$$

26.1 MATH410 Exam 2 Fall 2022

1. (a)

$$
\begin{aligned}
f(x) & =\frac{1}{2+x} \\
f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{\frac{1}{2+x}-\frac{1}{4}}{x-2} & =\lim _{x \rightarrow 2} \frac{4-(2+x)}{(2+x) 4(x-2)}=\lim _{x \rightarrow 2} \frac{-1}{4(2+x)}=\frac{-1}{16}
\end{aligned}
$$

(b) $g(x)=x^{5}+5 x+3$ for all x. Show g^{-1} exists and find $\left(g^{-1}\right)^{\prime}(9)$

Solution: $g^{\prime}(x)=5 x^{4}+5$ for all x means g is strictly increasing, so g^{-1} exists.
Note $g(1)=9$. So, $\left(g^{-1}\right)^{\prime}(9)=\frac{1}{g^{\prime}(1)}=\frac{1}{10}$.
2. (a) f has exactly two local maximizers, x_{1} and x_{2}, with $x_{1}<x_{2}$.

On $\left[x_{1}, x_{2}\right], h$ has a max and min value by the extreme value theorem. because continuous.
Say the minimum value is $h\left(z^{*}\right)$. Then z^{*} is a local minimizer of h.
(b) Assume $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, and M is anumber such that $\left|f^{\prime}(x)\right| \leq M$ for all real x. Prove that f is uniformly continuous.

Solution: note f is uniformly continuous if for any $\left\{u_{n}\right\},\left\{v_{n}\right\} \subseteq D$, with $\left|u_{n}-v_{n}\right| \rightarrow 0$, then $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right| \rightarrow 0$.

Let $\left\{u_{n}\right\},\left\{v_{n}\right\}$ be arbitrary, and $\left|u_{n}-v_{n}\right| \rightarrow 0$.
For each n, there is an x_{n} in interval between u_{n} and v_{n} with $\frac{f\left(u_{n}\right)-f\left(v_{n}\right)}{u_{n}-v_{n}}=f^{\prime}\left(x_{n}\right)$ by the mean value theorem.

Then $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right|=\left|f^{\prime}\left(x_{n}\right)\right|\left|u_{n}-v_{n}\right| \leq M\left|u_{n}-v_{n}\right| \rightarrow 0$. So, f is uniformly continuous.
3. (a) Let $g:[a, b] \rightarrow \mathbb{R}$ be bounded. Prove that $\int_{a}^{b} g(x) d x$ exists.

Let P be any partition of $[a, b]$. Then g is bounded, so there is an m so $m \leq g(x)$ for all x in $[a, b]$, and there is an M so that $m \leq g(x) \leq M$ for all x.

Then, $m(b-a) \leq L(f, P) \leq M(b-a)$, so $\int_{a}^{b} f=\sup _{P} L(f, P)$ exists.
(b) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is integrable and $\int_{a}^{b} f=F(b)-F(a)$, and $F^{\prime}=f$ on (a, b).

Let G be continuous on $[a, b]$, and $G^{\prime}=f$ on (a, b).
Then by the identity criterion, $G(x)=F(x)+C$ for $a<x<b$. But F is also continuous on $[a, b]$. Then $G(x)=F(x)$ for all x in $[a, b]$. So $G(b)-G(a)=(F(b)+C)-(F(a)+C)=F(b)-F(a)$.
4. (a) 4 properties: area is nonnegative, additive property, rectangle property, comparison property.
(b) State either 1st or 2nd fundamental theorem, not both.
5. (a)

$$
\frac{d}{d x} \int_{2}^{x} \frac{3 x}{t} d t=\frac{d}{d x} 3 x \int_{2}^{x} \frac{1}{t} d t=3 \int_{2}^{x} \frac{1}{t} d t+3 x\left(\frac{1}{x}\right)=2(\ln x-\ln 2)+3
$$

