25 First Fundamental Theorem, Integral IVT, Improper Integrals

25.1 First Fundamental Theorem, Integral IVT

Definition 25.1

$\ln x=\int_{1}^{x} \frac{1}{t} d t$ for $x>0$.
Note $\ln 1=0, \ln (a b)=\ln a+\ln b$ if $a, b>0$.

Note 25.2

Recall the following:
Thm 6.18: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is integrable on $[a, b]$.
If f is continuous on $[a, b]$, and $G(x)=\int_{a}^{x} f(t) d t, a \leq x \leq b$, then $G^{\prime}(x)=f(x)$ for $a \leq x \leq b$.
Second Fundamental Theorem ${ }^{* * * *: ~ I f ~} f:[a, b] \rightarrow \mathbb{R}$ is continuous, then $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x), a<x<b$.

Theorem 25.3 (First Fundamental Theorem of Calculus ****)
Let $F:[a, b] \rightarrow \mathbb{R}$ be continuous, and $F^{\prime}=f$ on (a, b), with f continuous and bounded on (a, b). Then $\int_{a}^{b} f(t) d t=\int_{a}^{b} F^{\prime}(t) d t=F(b)-F(a)$.

Proof. Let $G(x)=\int_{a}^{x} f(t) d t$, for $a \leq x \leq b$. Then we proved that $G^{\prime}(x)=f(x)$ for $a<x<b$.
Thus, $G^{\prime}(x)=f(x)=F^{\prime}(x)$, for $a<x<b$.
Then by the Identity Criterion, there is a constant C such that $G(x)=F(x)+C$ for $a<x<b$.
$\left.G(a)=0 \Longrightarrow \int_{a}^{b} f(t) d t=G(b)-G(a)=(F(b)+C)-(F(a)+C)=F(b)-F(a)\right)$ since F, G are continuous on $[a, b]$.

Note 25.4
In effect, by the first fundamental theorem, the integral of the derivative of F is essentially F (differing by a constant)

By the second fundamental theorem, the derivative of the integral of f is f.
By the first and second notes, differentiation and integration are essentially inverse processes.

Note 25.5
How about $\int_{0}^{1} x \sqrt{1+x^{2}} d x$?
Let $u=1+x^{2}$, so $d u=2 x d x, x=0 \Longrightarrow u=1$, and $x=1 \Longrightarrow u=2$.

$$
\int_{0}^{1} x \sqrt{1+x^{2}} d x=\int_{1}^{2} \frac{1}{2} u^{1 / 2} d u
$$

How about $\int_{1}^{2} \sqrt{1+x^{4}} d x$
$G(x)=\int_{1}^{x} \sqrt{1+t^{4}} d t$ is an anti derivative!

Theorem 25.6 (Mean Value Theorem for Integrals - Thm 6.26)
Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then there is an x_{0} in (a, b) such that $\frac{1}{b-a} \int_{a}^{b} f(t) d t=f\left(x_{0}\right)$, or equivalently, $\int_{a}^{b} f(t) d t=f\left(x_{0}\right)(b-a)$.

Proof. Let $m=\min _{a \leq x \leq b} f(x)$, and $M=\max _{a \leq x \leq b} f(x)$. Then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

So

$$
m \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq M
$$

f continuous on $[a, b]$ implies by the IVT that there is an x_{0} in (a, b) with $f\left(x_{0}\right)=\frac{1}{b-a} \int_{a}^{b} f(t) d t$

Example 25.7 (Exercise 6.6.5)
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, and let $G(x)=\int_{0}^{x}(x-t) f(t) d t$. Show $G^{\prime \prime}(x)=f(x)$ for all x.

Solution:

$$
\begin{aligned}
G(x) & =\int_{0}^{x}(x-t) f(t) d t \\
& =\int_{0}^{x} x f(t) d t-\int_{0}^{x} t f(t) d t \\
& =x \int_{0}^{x} f(t) d t-\int_{0}^{x} t f(t) d t \\
G^{\prime}(x) & =\int_{0}^{x} f(t) d t+x \frac{d}{d x} \int_{0}^{x} f(t) d t-\frac{d}{d x} \int_{0}^{x} t f(t) d t \\
& =\int_{0}^{x} f(t) d t+x f(x)-x f(x) \\
& =\int_{0}^{x} f(t) d t \\
G^{\prime \prime}(x) & =\frac{d}{d x} \int_{0}^{x} f(t) d t=f(x)
\end{aligned}
$$

25.2 Improper Integrals

Definition 25.8

Let f be continuous on $[a, b)$, with $\lim _{x \rightarrow b^{-}} f(x)=\infty$.
If $\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x$ is a number T, then $\int_{a}^{b} f(x) d x=T$, and $\int_{a}^{b} f(x) d x$ converges.
Otherwise, $\int_{a}^{b} f(x) d x$ diverges.
Similarly for $\lim _{c \rightarrow a^{+}} \int_{a}^{c} f(t) d t$, and $\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x$, etc.

Example 25.9

Determine if $\int_{1}^{2} \frac{1}{(x-1)^{4 / 3}} d x$ converges or diverges.

Solution:

$$
\int_{1}^{2} \frac{1}{(x-1)^{4 / 3}} d x=\lim _{a \rightarrow 1^{+}} \int_{a}^{2} \frac{1}{(x-1)^{4 / 3}} d x=\left.\lim _{a \rightarrow 1^{+}} \frac{-1}{3(x-1)^{1 / 3}}\right|_{a} ^{2}=\cdots=\infty
$$

So, it diverges.

