24 Fundamental Theorem of Calculus, Logarithms

Items:

1. If $f:[a, b] \rightarrow \mathbb{R}$ is bounded and integrable, then why is $f(a)$ irrelevant to $\int_{a}^{b} f$?
2. If g is a step function on $[a, b]$, why is g integrable?

Solution: g is bounded, so let $|g(x)| \leq M$.
Let g have k steps. Let P_{n} be a regular partition with $\operatorname{gap} P_{n}=\frac{b-a}{n}$, with n large.
Then $U\left(g, P_{n}\right)-L\left(g, P_{n}\right) \leq(k-1) \cdot 2 M \cdot \frac{b-a}{n} \rightarrow 0$ (the difference is different from 0 when a partition overlaps two different steps)
3. $f(x)=\left\{\begin{array}{ll}0 & x \text { rational in }[0,1] \\ 1 & x \text { irrational in }[0,1]\end{array}\right.$. Then f is bounded but not integrable.

Definition 24.1
If $a<b$, then $\int_{a}^{b} f=-\int_{b}^{a} f$ by definition, so $\int_{b}^{a} f=-\int_{a}^{b} f$.

Definition 24.2

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then define $F(x)=\int_{a}^{x} f(t) d t$ for $a \leq x \leq b$.

By the linearity, f is integrable on $[a, x]$ for $a \leq x \leq b$.

Theorem 24.3

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous, and $F(x)=\int_{a}^{x} f(t) d t$.
Then $F^{\prime}(x)=f(x)$ for $a<x<b$, and F is continuous on $[a, b]$.

Proof. Let x_{0} be arbitrary in (a, b), and $x \approx x_{0}$ with x in (a, b). Then

$$
\lim _{x \rightarrow x_{0}} \frac{F(x)-F\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\int_{a}^{x} f(t) d t-\int_{a}^{x_{0}} f(t) d t}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\int_{x_{0}}^{x} f(t) d t}{x-x_{0}}=\frac{f\left(x_{0}\right)\left(x-x_{0}\right)}{x-x_{0}}=f\left(x_{0}\right)
$$

So, $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$, for all x_{0} in (a, b). Not at the endpoints because there is no neighborhood around the endpoints.
So, F is continuous on (a, b) (Thm 4.5 states differentiability implies continuity).
To show F is continuous on $[a, b]$, let $x_{0}=a$.
Let $x_{n} \rightarrow a, a \leq x_{n} \leq b$. Then

$$
\left|F\left(x_{n}\right)-F(a)\right|=\left|\int_{a}^{x_{n}} f(t) d t-\int_{a}^{a} f(t) d t\right|=\left|\int_{a}^{x_{0}} f(t) d t\right| \approx f(a)\left(x_{n}-a\right) \rightarrow 0
$$

So, F is continuous at a.
Similarly, F is continuous at b, so F is continuous on $[a, b]$.

Theorem 24.4 (Second Fundamental Theorem of Calculus ****)
If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then $\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)$ for $a<x<b$.

Proof. Proof is in the preceding theorem.

Corollary 24.5 (Corollary 6.32)

Let I, J be open intervals, and $f: I \rightarrow \mathbb{R}, \phi: J \rightarrow \mathbb{R}$, with $\phi(J) \leq I$.
Assume f, ϕ are diffferentiable. Then

$$
\frac{d}{d x} \int_{a}^{\phi(x)} f(t) d t=(f(\phi(x))) \phi^{\prime}(x)
$$

for x in J.

Proof. Let $G(x)=\int_{a}^{x} f(t) d t, x$ in the domain of G.
By the Chain Rule, if $G(\phi(x))=\int_{a}^{\phi(x)} f(t) d t$, then

$$
\frac{d}{d x} G(\phi(x))=\frac{d}{d x} \int_{a}^{\phi(x)} f(t) d t=[f(\phi(x))]\left(\phi^{\prime}(x)\right)
$$

Example 24.6

$$
\begin{aligned}
& G_{1}(x)=\int_{a}^{x^{2}} \sin t d t \Longrightarrow G_{1}^{\prime}(x)=\left(\sin \left(x^{2}\right)\right)(2 x) \\
& G_{2}(x)=\int_{e^{2 x}}^{a} \sin t d t=-\int_{a}^{e^{2 x}} \sin t d t \Longrightarrow G_{2}^{\prime}(x)=\left(-\sin \left(e^{2 x}\right)\right)\left(2 e^{2 x}\right) \\
& G_{3}(x)=\int_{0}^{x} \sin (x+t) d t=\int_{0}^{x}(\sin x \cos t+\cos x \sin t) d t=(\sin x) \int_{0}^{x} \cos t d t+(\cos x) \int_{0}^{x} \sin t d t \\
& \quad G_{3}^{\prime}(x)=\left[(\cos x) \int_{0}^{x} \cos t d t+(\sin x)(\cos x)\right]+\left[(-\sin x) \int_{0}^{x} \sin t d t+(\cos x)(\sin x)\right]
\end{aligned}
$$

Definition 24.7

Let $G(x)=\int_{1}^{x} \frac{1}{t} d t$ for $x>0$.
Note that $G(1)=0$.

Example 24.8

Show $G(a x)=G(a)+G(x)$ for $a>0, x>0$.

Proof. Let $H(x)=G(a x)-G(a)-G(x), x>0$. We show that $H(x)=0$ for $x>0$.
$H^{\prime}(x)=G^{\prime}(a x)-0-\frac{1}{x}$
$G(a x)=\int_{1}^{a x} \frac{1}{t} d t \Longrightarrow G^{\prime}(a x)=\frac{1}{a x} \cdot a=\frac{1}{x}$.
So, $H^{\prime}(x)=\frac{1}{x}-0-\frac{1}{x}=0$ for all $x>0$.
So, there is a constant C such that $H(x)=C$ for all $x>0$.
$H(1)=G(a)-G(a)-G(1)=0$, so $C=0$.
Thus, $H(x)=0$ for $x>0$.

