
Lecture 24: Fundamental Theorem of Calculus, Logarithms

24 Fundamental Theorem of Calculus, Logarithms
Items:

1. If f : [a, b] → R is bounded and integrable, then why is f(a) irrelevant to
∫ b

a
f?

2. If g is a step function on [a, b], why is g integrable?

Solution: g is bounded, so let |g(x)| ≤ M .
Let g have k steps. Let Pn be a regular partition with gapPn = b−a

n , with n large.

Then U(g, Pn) − L(g, Pn) ≤ (k − 1) · 2M · b−a
n → 0 (the difference is different from 0 when a parti-

tion overlaps two different steps)

3. f(x) =

{
0 x rational in [0, 1]

1 x irrational in [0, 1]
. Then f is bounded but not integrable.

Definition 24.1
If a < b, then

∫ b

a
f = −

∫ a

b
f by definition, so

∫ a

b
f = −

∫ b

a
f .

Definition 24.2
If f : [a, b] → R is continuous, then define F (x) =

∫ x

a
f(t) dt for a ≤ x ≤ b.

By the linearity, f is integrable on [a, x] for a ≤ x ≤ b.

Theorem 24.3
Let f : [a, b] → R be continuous, and F (x) =

∫ x

a
f(t) dt.

Then F ′(x) = f(x) for a < x < b, and F is continuous on [a, b].

Proof. Let x0 be arbitrary in (a, b), and x ≈ x0 with x in (a, b). Then

lim
x→x0

F (x)− F (x0)

x− x0
= lim

x→x0

∫ x

a
f(t) dt−

∫ x0

a
f(t) dt

x− x0
= lim

x→x0

∫ x

x0
f(t) dt

x− x0
=

f(x0)(x− x0)

x− x0
= f(x0)

So, F ′(x0) = f(x0), for all x0 in (a, b). Not at the endpoints because there is no neighborhood around the
endpoints.
So, F is continuous on (a, b) (Thm 4.5 states differentiability implies continuity).

To show F is continuous on [a, b], let x0 = a.
Let xn → a, a ≤ xn ≤ b. Then

|F (xn)− F (a)| =
∣∣∣∣∫ xn

a

f(t) dt−
∫ a

a

f(t) dt

∣∣∣∣ = ∣∣∣∣∫ x0

a

f(t) dt

∣∣∣∣ ≈ f(a)(xn − a) → 0

So, F is continuous at a.

Similarly, F is continuous at b, so F is continuous on [a, b].

Theorem 24.4 (Second Fundamental Theorem of Calculus ****)
If f : [a, b] → R is continuous, then d

dx

[∫ x

a
f(t) dt

]
= f(x) for a < x < b.

Proof. Proof is in the preceding theorem.
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Corollary 24.5 (Corollary 6.32)
Let I, J be open intervals, and f : I → R , ϕ : J → R, with ϕ(J) ≤ I.

Assume f, ϕ are diffferentiable. Then

d

dx

∫ ϕ(x)

a

f(t) dt = (f(ϕ(x)))ϕ′(x)

for x in J .

Proof. Let G(x) =
∫ x

a
f(t) dt, x in the domain of G.

By the Chain Rule, if G(ϕ(x)) =
∫ ϕ(x)

a
f(t) dt, then

d

dx
G(ϕ(x)) =

d

dx

∫ ϕ(x)

a

f(t) dt = [f(ϕ(x))](ϕ′(x))

Example 24.6
G1(x) =

∫ x2

a
sin t dt =⇒ G′

1(x) =
(
sin(x2)

)
(2x)

G2(x) =
∫ a

e2x
sin t dt = −

∫ e2x

a
sin t dt =⇒ G′

2(x) =
(
− sin(e2x)

)
(2e2x)

G3(x) =

∫ x

0

sin(x+ t) dt =

∫ x

0

(sinx cos t+ cosx sin t) dt = (sinx)

∫ x

0

cos t dt+ (cosx)

∫ x

0

sin t dt

G′
3(x) =

[
(cosx)

∫ x

0

cos t dt+ (sinx)(cosx)

]
+

[
(− sinx)

∫ x

0

sin t dt+ (cosx)(sinx)

]

Definition 24.7
Let G(x) =

∫ x

1
1
t dt for x > 0.

Note that G(1) = 0.

Example 24.8
Show G(ax) = G(a) +G(x) for a > 0, x > 0.

Proof. Let H(x) = G(ax)−G(a)−G(x), x > 0. We show that H(x) = 0 for x > 0.

H ′(x) = G′(ax)− 0− 1
x

G(ax) =
∫ ax

1
1
t dt =⇒ G′(ax) = 1

ax · a = 1
x .

So, H ′(x) = 1
x − 0− 1

x = 0 for all x > 0.

So, there is a constant C such that H(x) = C for all x > 0.

H(1) = G(a)−G(a)−G(1) = 0, so C = 0.

Thus, H(x) = 0 for x > 0.
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