23 Area, Integrability

Important theorems in Chapter 6 (on integration)

- Archimedes-Riemann Theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Then f is integrable if and only if there is a sequence of partitions $\left\{P_{n}\right\}_{n=1}^{\infty}$ of $[a, b]$ with $\lim _{n \rightarrow \infty}\left(U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right)=0$.
- Additivity Theorem (6.12): If $f:[a, b] \rightarrow \mathbb{R}$ is bounded, and $a<c<b$, and $\int_{a}^{b} f$ exists, then so do $\int_{a}^{c} f, \int_{c}^{b} f$, and $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$.
- Monotonicity Theorem (6.13): $\int_{a}^{b} f \leq \int_{a}^{b} g$ if $f \leq g$ on $[a, b]$.
- Linearity (6.15): $\int_{a}^{b}(\alpha f+\beta g)=\alpha \int_{a}^{b} f+\beta \int_{a}^{b} g$ where α, β are constants.

23.1 Area

Big items:

1. The area A of rectangle of base $b-a$ and height c is $c(b-a)=\int_{a}^{b} c$ where $a<b, c \geq 0$.
2. Area $A \geq 0$. The area of the region between the graph of f and the x axis on $[a, b]$ is $\int_{a}^{b}|f|$.
3. Addition Property: The sum of the areas A_{1} and A_{2} of 2 non-intersecting regions is the sum of the areas.
4. Comparison Property: A smaller region has less area than a larger region. If $0 \leq f \leq g$ on $[a, b]$, and f, g integrable, then $\int_{a}^{b} f \leq \int_{a}^{b} g$.

Theorem 23.1 (Thm $6.18^{* * *)}$

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then f is integrable on $[a, b]$ ($\int_{a}^{b} f$ exists).

Proof. Let $\epsilon>0$ be arbitrary. Then note f continuous on $[a, b]$ implies that f is uniformly continuous on $[a, b]$. Then there is $\delta>0$ so if x, z are in $[a, b]$ and $|x-z|<\delta$, then $|f(x)-f(z)|<\frac{\epsilon}{b-a}$.

By the Archimedes Property, there is an n so $\frac{b-a}{n}<\delta$.
Let $\left\{P_{n}\right\}_{n=1}^{\infty}$ be a sequence of regular partitions of $[a, b]$ with gap $P_{n}=\frac{b-a}{n}$.
Then $U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \frac{b-a}{n}<\sum_{i=1}^{n}<\frac{\epsilon}{b-a} \cdot \frac{b-a}{n}=\epsilon \sum_{i=1}^{n} \frac{1}{n}=\epsilon$.
So, the Archimedes Riemann Theorem implies that f is integrable on $[a, b]$.

Corollary 23.2 (6.19)
Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded and continuous on $(a, b]$. Then f is integrable.

Proof. Let $P_{n}=\left\{a=x_{0}, x^{*}, x_{2}, \cdots, x_{n}=b\right\}$ be regular, $\operatorname{gap} P_{n}=\frac{b-a}{n}$ for $n \geq 1$.
Since f is continuous on $\left[x^{*}, b\right], f$ is integrable on $\left[x^{*}, b\right]$, so we can assume if $P_{n}^{*}=\left\{x^{*}, x_{2}, \cdots, x_{n}=b\right\}$, then $U\left(f, P_{n}^{*}\right)-L\left(f, P_{n}^{*}\right) \rightarrow 0$.

Then $U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\left(M_{1}-m_{1}\right)\left(x^{*}-a\right)+U\left(f, P_{n}^{*}\right)-L\left(f, P_{n}^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$ and $x^{*} \rightarrow a$, because M_{1} and m_{1} are bounded, and $x^{*}-a \rightarrow 0$.

Example 23.3

Let $g_{n}(x)=\cos (2 n \pi x), 0 \leq x \leq 1$.
$g_{n}\left(\frac{1}{n}\right)=1, g_{n}\left(\frac{2}{n}\right)=\cos 4 \pi=1$
$g_{n}\left(\frac{k}{n}\right)=1, g_{n}\left(\frac{k}{n}+\frac{1}{2 n}\right)=-1$
Given $P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \cdots\right\}, U\left(g_{n}, P_{n}\right)-L\left(g_{n}, P_{n}\right)=\sum_{i=1}^{n}(1-(-1)) \frac{1}{n}=2$.
But g is integrable since it is continuous. This is only a particular P_{n}.

