22 Additivity, Monotonicity, and Linearity of Integrals

Example 22.1 (Problem 6.2.6a) Show

$$\int_a^b x \, dx = \frac{b^2 - a^2}{2}$$

Solution: Let P_n be a regular partition of [a, b], gap $P_n = \frac{b-a}{n}$, $n \ge 1$.

Since $0 \le a$ by hypothesis, then f is strictly increasing on [a, b], so f is integrable by Example 6.9. Now,

$$U(f, P_n) = \sum_{i=1}^n f(x_i) \frac{b-a}{n}$$
$$= \sum_{i=1}^n \left(a + i\frac{b-a}{n}\right) \frac{b-a}{n}$$
$$= \frac{b-a}{n} \left(na + \frac{b-a}{n} \sum_{i=1}^n i\right)$$
$$\approx \frac{b-a}{2} \quad \text{as } n \to \infty$$

Questions from Monday:

- 1. Is a partition a finite set of points? Yes.
- 2. Why is $L(f, P) \leq U(f, Q)$, any partitions P, Q of [a, b]?

If P^* is a common refinement, then $L(f, P) \leq L(f, P^*) \leq U(f, P^*) \leq U(f, Q)$

3. Note: $\sup_P L(f, P) \leq A \leq \inf_Q U(f, Q)$ (there is always a number A with this property)

If only one A exists, then $A = \int_a^b f$. (because $\sup_P L(f, P) = \int_a^b f$, $\inf_Q U(f, Q) = \overline{\int}_a^b$)

4. If $f : [a, b] \to \mathbb{R}$ is monotone, then is f bounded? Yes, if f is monotonically increasing on [a, b], then f(b) is the max value, and f(a) is the minimum value (because we have a closed interval, and extreme value theorem).

Theorem 22.2 (Archimedes-Riemann Theorem) Let $f : [a, b] \to \mathbb{R}$ be bounded. Then f is integrable if and only if there is a sequence $\{P_n\}_{n=1}^{\infty}$ of partitions of [a, b] with $U(f, P_n) - L(f, P_n) \to 0$.

Note 22.3

Note: we usually take P_n to be a regular partition with gap $P_n = \frac{b-a}{n}$.

Note: If $\lim_{x\to a^+} f(x) = \infty$, then there is a crisis with U(f, P) since $\sup_{a \le x \le x_1} f(x) = \infty$.

Note: $(x) = x^k$ on $[a, b] \implies$ if $a \ge 0$ or $b \le 0$, then f is integrable. Then x^k is integrable, since it is monotone.

Theorem 22.4 (Additivity of Integral - Thm 6.12) Assume $f : [a, b] \to \mathbb{R}$ is integrable, and a < c < b. Then f is integrable on [a, c] and on [c, b].

Proof. Let $\{P_n\}_{n=1}^{\infty}$ be a sequence of partitions of [a, b] with c a pt of P_n for each P_n with $U(f, P_n) - L(f, P_n) \to 0$. Let $Q_n = P_n \cap [a, c]$, and $R_n = P_n \cap [c, b]$. Then $U(f,Q_n) - L(f,Q_n) \to 0$, and $U(f,R_n) - L(f,R_n) \to 0$. So f is integrable on [a,c] and on [c,b] by Archimedes Riemann Theorem.

Theorem 22.5 (Thm 6.13 (Monotonicity)) Let $f : [a, b] \to \mathbb{R}$, $g : [a, b] \to \mathbb{R}$ be bounded and integrable.

Assume $f \leq g$ on [a, b]. Then $\int_a^b f \leq \int_a^b g$.

Proof. Let $P = \{a = x_0, x_1, \cdots, x_n = b\}$ be a partition of [a, b]. Then

$$L(f,P) = \sum_{i=1}^{n} m_i^f(m_i - x_{i-1}) \le \sum_{i=1}^{n} m_i^g(x_i - x_{i-1}) = L(g,P)$$

And also, $U(f, P) \leq U(g, P)$.

Then, $\sup_P L(f, P) \leq \sup_P L(g, P)$ and $\inf U(f, P) \leq \inf U(g, P)$ So, $\int_a^b f \leq \int_a^b g$.

Lemma 22.6 If $f:[a,b] \to \mathbb{R}$ is bounded and integrable, and α is constant, then αf is integrable, and $\int_a^b \alpha f = \alpha \int_a^b f$.

Proof.

$$L(\alpha f, P) = \sum_{i=1}^{n} am_i(x_i - x_{i-1}) = \alpha \sum_{i=1}^{n} m_i(x_i - x_{i-1}) = \alpha L(f, P)$$

Similarly, $U(\alpha f, P) = \alpha U(f, P)$.

So, αf is integrable.

Theorem 22.7 (Thm 6.15 - Linearity) Let $f : [a, b] \to \mathbb{R}$, $g : [a, b] \to \mathbb{R}$ integrable. Then f + g is integrable, and if α, β constants, then

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

Proof. In lecture notes. Proof uses $\inf_{I} \{f(x) + g(x)\} \ge \inf_{I} f(x) + \inf_{I} g(x)$ for interval I, and $\sup_{I} f(x) + \sup_{I} g(x) \ge \sup_{I} (f(x) + g(x))$

Example where $\inf_{I} \{f(x) + g(x)\} \neq \inf_{I} f(x) + \inf_{I} g(x)$: Let f(x) = x and g(x) = 1 - x for $0 \le x \le 1$.

Then $\inf_{[0,1]} f(x) = 0 = \inf_{[0,1]} g(x)$ So $\inf f + \inf g = 0$.

$$f(x) + g(x) = 1$$
, so $\inf(f(x) + g(x)) = 1$