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Example 22.1 (Problem 6.2.6a)
Show ∫ b

a

x dx =
b2 − a2

2

Solution: Let Pn be a regular partition of [a, b], gap Pn = b−a
n , n ≥ 1.

Since 0 ≤ a by hypothesis, then f is strictly increasing on [a, b], so f is integrable by Example 6.9.

Now,

U(f, Pn) =

n∑
i=1

f(xi)
b− a

n

=

n∑
i=1

(
a+ i

b− a

n

)
b− a

n

=
b− a

n

(
na+

b− a

n

n∑
i=1

i

)

≈ b− a

2
as n → ∞

Questions from Monday:

1. Is a partition a finite set of points? Yes.

2. Why is L(f, P ) ≤ U(f,Q), any partitions P , Q of [a, b]?

If P ∗ is a common refinement, then L(f, P ) ≤ L(f, P ∗) ≤ U(f, P ∗) ≤ U(f,Q)

3. Note: supP L(f, P ) ≤ A ≤ infQ U(f,Q) (there is always a number A with this property)

If only one A exists, then A =
∫ b

a
f . (because supP L(f, P ) =

∫ b

a
f , infQ U(f,Q) =

∫ b

a
)

4. If f : [a, b] → R is monotone, then is f bounded? Yes, if f is monotonically increasing on [a, b], then f(b)
is the max value, and f(a) is the minimum value (because we have a closed interval, and extreme value
theorem).

Theorem 22.2 (Archimedes-Riemann Theorem)
Let f : [a, b] → R be bounded. Then f is integrable if and only if there is a sequence {Pn}∞n=1 of partitions
of [a, b] with U(f, Pn)− L(f, Pn) → 0.

Note 22.3
Note: we usually take Pn to be a regular partition with gapPn = b−a

n .

Note: If limx→a+ f(x) = ∞, then there is a crisis with U(f, P ) since supa≤x≤x1
f(x) = ∞.

Note: (x) = xk on [a, b] =⇒ if a ≥ 0 or b ≤ 0, then f is integrable. Then xk is integrable, since it is
monotone.

Theorem 22.4 (Additivity of Integral - Thm 6.12)
Assume f : [a, b] → R is integrable, and a < c < b.
Then f is integrable on [a, c] and on [c, b].

Proof. Let {Pn}∞n=1 be a sequence of partitions of [a, b] with c a pt of Pn for each Pn with U(f, Pn)−L(f, Pn) → 0.
Let Qn = Pn ∩ [a, c], and Rn = Pn ∩ [c, b].

1



Lecture 22: Additivity, Monotonicity, and Linearity of Integrals

Then U(f,Qn) − L(f,Qn) → 0, and U(f,Rn) − L(f,Rn) → 0. So f is integrable on [a, c] and on [c, b] by
Archimedes Riemann Theorem.

Theorem 22.5 (Thm 6.13 (Monotonicity))
Let f : [a, b] → R, g : [a, b] → R be bounded and integrable.

Assume f ≤ g on [a, b]. Then
∫ b

a
f ≤

∫ b

a
g.

Proof. Let P = {a = x0, x1, · · · , xn = b} be a partition of [a, b]. Then

L(f, P ) =

n∑
i=1

mf
i (mi − xi−1) ≤

n∑
i=1

mg
i (xi − xi−1) = L(g, P )

And also, U(f, P ) ≤ U(g, P ).

Then, supP L(f, P ) ≤ supP L(g, P ) and inf U(f, P ) ≤ inf U(g, P )

So,
∫ b

a
f ≤

∫ b

a
g.

Lemma 22.6
If f : [a, b] → R is bounded and integrable, and α is constant, then αf is integrable, and

∫ b

a
αf = α

∫ b

a
f .

Proof.

L(αf, P ) =

n∑
i=1

ami(xi − xi−1) = α

n∑
i=1

mi(xi − xi−1) = αL(f, P )

Similarly, U(αf, P ) = αU(f, P ).

So, αf is integrable.

Theorem 22.7 (Thm 6.15 - Linearity)
Let f : [a, b] → R, g : [a, b] → R integrable. Then f + g is integrable, and if α, β constants, then∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g

Proof. In lecture notes. Proof uses infI{f(x) + g(x)} ≥ infI f(x) + infI g(x) for interval I, and supI f(x) +
supI g(x) ≥ supI(f(x) + g(x))

Example where infI{f(x) + g(x)} ≠ infI f(x) + infI g(x):
Let f(x) = x and g(x) = 1− x for 0 ≤ x ≤ 1.

Then inf [0,1] f(x) = 0 = inf [0,1] g(x) So inf f + inf g = 0.

f(x) + g(x) = 1, so inf(f(x) + g(x)) = 1.
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