21 Integrals

Questions from chapter 4:

1. $g(x)=x^{3 / 2} \Longrightarrow g^{\prime}(0)$ exists? No, because g is not defined for $x<0$.
x needs a neighborhood in the domain to have a derivative at $x=0$.
2. $g(x)=x+\sin x \Longrightarrow \mathrm{~g}$ strictly increasing.
$g^{\prime}(x)=1+\cos x>0$ if $x=\pi+2 n \pi$.
The derivative can be equal to 0 at isolated points, and the function can still be strictly increasing.
3. $h(x)=x^{1 / 3} \Longrightarrow h$ strictly increasing, h is continuous but $h^{\prime}(0)$ DNE.
4. Let $f:[a, b] \rightarrow \mathbb{R}, f$ continuous and differnetiable on (a, b). Must there be x_{0} in (a, b) with $f^{\prime}\left(x_{0}\right)=$ $\frac{f(b)-f(a)}{b-a}$? No.

$$
f(x)=0,0 \leq x<1, f(1)=1
$$

Note 21.1

Recall that $f:[a, b] \rightarrow \mathbb{R}$ is bounded, $P=\left\{a=x_{0}, x_{1}, \cdots, x_{n}=b\right\}$ a partition.
Then $L(f, P)=$ lower sum $=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)$ where $m_{i}=\inf \left\{f(x) ; x_{i-1} \leq x \leq x_{i}\right\}$
$U(f, P)=$ upper sum $=\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)$ where $M_{i}=\sup \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}$.
$L(f, P) \leq U(f, P)$ always.

Definition 21.2

P^{*} is a refinement of P if P^{*} has all of the points of P.

Lemma 21.3 (Lemma 6.3)
If $f:[a, b] \rightarrow \mathbb{R}$ is bounded, P^{*} is a common refinement of partitions P and Q, then $L(f, P) \leq L\left(f, P^{*}\right) \leq$ $U\left(f, P^{*}\right) \leq U(f, Q)$. So every lower sum $L(f, P) \leq$ every upper sum $L(f, Q)$.

Then, $\int_{a}^{b} f=\sup _{P} L(f, P) \leq \inf _{P} U(f, P)=\bar{\int}_{a}^{b} f$

Definition 21.4

If $\int_{a}^{b} f=\bar{\int}_{a}^{b} f$, then f is integrable on $[a, b]$, and we write $\int_{a}^{b} f$, or $\int_{a}^{b} f(x) d x$.

Theorem 21.5 (Archimedes-Riemann Theorem - Thm $6.8^{* * *}$)

Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded.
Then f is integrable on $[a, b]$ if and only if there is a sequence $\left\{P_{n}\right\}_{n=1}^{\infty}$ of partitions of $[a, b]$ with $\lim _{n \rightarrow \infty}\left(U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right)=0$.

Proof. (\Longrightarrow) Assume f is integrable, so $\sup _{P} L(f, P)=\inf _{P} U(f, P)$.
Then there are sequences of partitions $\left(P_{n}\right)_{n=1}^{\infty},\left(Q_{n}\right)_{n=1}^{\infty}$ with $U\left(f, P_{n}\right)-L\left(f, Q_{n}\right)<\frac{1}{n}$ for $n \geq 1$.
Let P_{n}^{*} be a common refinement of P_{n}, Q_{n}.
Then $0 \leq U\left(f, P_{n}^{*}\right)-L\left(f, P_{n}^{*}\right) \leq U\left(f, P_{n}\right)-L\left(f, Q_{n}\right) \rightarrow 0$ (because $L\left(f, P_{n}\right) \leq L\left(f, P_{n}^{*}\right) \leq U\left(f, P_{n}^{*}\right) \leq U\left(f, Q_{n}\right)$).
(\Longleftarrow) Assume $U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \rightarrow 0$.
Then $\int_{a}^{b} f=\bar{\int}_{a}^{b} f$, so f is integrable.

Example 21.6 (Example $6.9^{* *}$)
Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded and increasing. Then f is integrable.

Proof. Intermission.

Definition 21.7

A partition of P of $[a, b]$ is regular if $P=\left\{a=x_{0}, x_{1}, \cdots, x_{n}=b\right\}$ and all of the subintervals have the same length $\frac{b-a}{n}$. gap $P=$ length of the largest subinterval.

Proof. (Example 6.9) Let P_{n} be a regular partition of $[a, b]$ with gap $P_{n}=\frac{b-a}{n}$.
$U\left(f, P_{n}\right)=\sum_{i=1}^{n} f\left(x_{i}\right) \frac{b-a}{n}$ Let $\epsilon>0$ be arbitrary. Then there is, by the Archimedean property, and n with $0<\frac{b-a}{n}[f(b)-f(a)]<\epsilon$.
$U\left(f, P_{n}\right)=\frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$ and $L\left(f, P_{n}\right)=\frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i-1}\right)$.
Then, $U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\frac{b-a}{n} \sum_{i=1}^{n}\left[f\left(x_{i}\right)-f\left(x_{i-1}\right)\right]=\frac{b-a}{n}[f(b)-f(a)]<\epsilon$. So f is integrable.

Example 21.8

Let $f(x)=x, 0 \leq x \leq 1$. Show that f is integrable, and $\int_{0}^{1} f(x) d x=\frac{1}{2}$

Solution: Since f is increasing on $[a, b]$, it is integrable by Example 6.9.
Let P_{n} be regular with gap $P_{n}=\frac{1}{n}$.
Then

$$
\begin{gathered}
U\left(f, P_{n}\right)=\sum_{i=1}^{n} f\left(\frac{i}{n}\right) \frac{1-0}{n}=\sum_{i=1}^{n} \frac{1}{n} \frac{1}{n}=\frac{1}{n^{2}} \sum_{i=1}^{n} i=\frac{1}{n^{2}} \frac{n(n+1)}{2} \rightarrow \frac{1}{2} \\
L\left(f, P_{n}\right)=\sum_{i=1}^{n} f\left(\frac{i-1}{n}\right)\left(\frac{1-0}{n}\right)=\sum_{i=1}^{n} \frac{i-1}{n} \frac{1}{n}=\frac{1}{n^{2}} \sum_{i=0}^{n-1} i=\frac{1}{n^{2}} \frac{(n-1)(n)}{2} \rightarrow \frac{1}{2}
\end{gathered}
$$

