21 Integrals

Questions from chapter 4:

1. $g(x) = x^{3/2} \implies g'(0)$ exists? No, because g is not defined for x < 0.

x needs a neighborhood in the domain to have a derivative at x = 0.

2. $g(x) = x + \sin x \implies$ g strictly increasing. $g'(x) = 1 + \cos x > 0$ if $x = \pi + 2n\pi$.

The derivative can be equal to 0 at isolated points, and the function can still be strictly increasing.

- 3. $h(x) = x^{1/3} \implies h$ strictly increasing, h is continuous but h'(0) DNE.
- 4. Let $f : [a, b] \to \mathbb{R}$, f continuous and differentiable on (a, b). Must there be x_0 in (a, b) with $f'(x_0) = \frac{f(b) f(a)}{b a}$? No.

 $f(x) = 0, 0 \le x < 1, f(1) = 1$

Note 21.1

Recall that $f:[a,b] \to \mathbb{R}$ is bounded, $P = \{a = x_0, x_1, \cdots, x_n = b\}$ a partition.

Then $L(f, P) = \text{lower sum} = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$ where $m_i = \inf\{f(x); x_{i-1} \le x \le x_i\}$ $U(f, P) = \text{upper sum} = \sum_{i=1}^{n} M_i (x_i - x_{i-1})$ where $M_i = \sup\{f(x) : x_{i-1} \le x \le x_i\}$.

 $L(f, P) \leq U(f, P)$ always.

Definition 21.2

 P^* is a **refinement** of P if P^* has all of the points of P.

Lemma 21.3 (Lemma 6.3)

If $f:[a,b] \to \mathbb{R}$ is bounded, P^* is a common refinement of partitions P and Q, then $L(f,P) \le L(f,P^*) \le U(f,P^*) \le U(f,Q)$. So every lower sum $L(f,P) \le$ every upper sum L(f,Q).

Then, $\int_a^b f = \sup_P L(f,P) \leq \inf_P U(f,P) = \bar{\int}_a^b f$

Definition 21.4 If $\int_a^b f = \overline{\int}_a^b f$, then f is **integrable** on [a, b], and we write $\int_a^b f$, or $\int_a^b f(x) dx$.

Theorem 21.5 (Archimedes-Riemann Theorem - Thm 6.8 ***) Let $f : [a, b] \to \mathbb{R}$ be bounded. Then f is integrable on [a, b] if and only if there is a sequence $\{P_n\}_{n=1}^{\infty}$ of partitions of [a, b] with $\lim_{n\to\infty} (U(f, P_n) - L(f, P_n)) = 0$.

Proof. (\implies) Assume f is integrable, so $\sup_P L(f, P) = \inf_P U(f, P)$. Then there are sequences of partitions $(P_n)_{n=1}^{\infty}, (Q_n)_{n=1}^{\infty}$ with $U(f, P_n) - L(f, Q_n) < \frac{1}{n}$ for $n \ge 1$.

Let P_n^* be a common refinement of P_n, Q_n .

$$\text{Then } 0 \leq U(f, P_n^*) - L(f, P_n^*) \leq U(f, P_n) - L(f, Q_n) \rightarrow 0 \text{ (because } L(f, P_n) \leq L(f, P_n^*) \leq U(f, P_n^*) \leq U(f, Q_n) \text{)}.$$

 (\Leftarrow) Assume $U(f, P_n) - L(f, P_n) \to 0$. Then $\underline{\int}_a^b f = \overline{\int}_a^b f$, so f is integrable.

Example 21.6 (Example 6.9 **) Let $f : [a, b] \to \mathbb{R}$ be bounded and increasing. Then f is integrable.

Proof. Intermission.

Definition 21.7

A partition of P of [a, b] is **regular** if $P = \{a = x_0, x_1, \dots, x_n = b\}$ and all of the subintervals have the same length $\frac{b-a}{n}$. gap P = length of the largest subinterval.

Proof. (Example 6.9) Let P_n be a regular partition of [a, b] with gap $P_n = \frac{b-a}{n}$.

 $U(f, P_n) = \sum_{i=1}^n f(x_i) \frac{b-a}{n}$ Let $\epsilon > 0$ be arbitrary. Then there is, by the Archimedean property, and n with $0 < \frac{b-a}{n} [f(b) - f(a)] < \epsilon$.

$$U(f, P_n) = \frac{b-a}{n} \sum_{i=1}^n f(x_i)$$
 and $L(f, P_n) = \frac{b-a}{n} \sum_{i=1}^n f(x_{i-1}).$

Then, $U(f, P_n) - L(f, P_n) = \frac{b-a}{n} \sum_{i=1}^n [f(x_i) - f(x_{i-1})] = \frac{b-a}{n} [f(b) - f(a)] < \epsilon$. So f is integrable.

Example 21.8 Let $f(x) = x, 0 \le x \le 1$. Show that f is integrable, and $\int_0^1 f(x) dx = \frac{1}{2}$

Solution: Since f is increasing on [a, b], it is integrable by Example 6.9.

Let P_n be regular with gap $P_n = \frac{1}{n}$. Then

$$U(f, P_n) = \sum_{i=1}^n f\left(\frac{i}{n}\right) \frac{1-0}{n} = \sum_{i=1}^n \frac{1}{n} \frac{1}{n} = \frac{1}{n^2} \sum_{i=1}^n i = \frac{1}{n^2} \frac{n(n+1)}{2} \to \frac{1}{2}$$
$$L(f, P_n) = \sum_{i=1}^n f\left(\frac{i-1}{n}\right) \left(\frac{1-0}{n}\right) = \sum_{i=1}^n \frac{i-1}{n} \frac{1}{n} = \frac{1}{n^2} \sum_{i=0}^{n-1} i = \frac{1}{n^2} \frac{(n-1)(n)}{2} \to \frac{1}{2}$$