20 L'Hopital's Rule, Partitions, Refinements, Upper/Lower Integrals

Note 20.1

Recall the Cauchy MVT: Let $f : [a,b] \to \mathbb{R}$, $g : [a,b] \to \mathbb{R}$ continuous on [a,b], differentiable on (a,b). $g'(x) \neq 0$ for x in (a,b), and $g(a) \neq g(b)$. Then there is an x_0 in (a,b) such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x_0)}{g'(x_0)}$$

Theorem 20.2 (L'Hopital's Rule)

Assume f(a) = 0 = g(a). Assume $g(x) \neq 0$, $g'(x) \neq 0$ for a < x < b. Then

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

Proof. By the Cauchy MVT, for an x in (a, b), there is z_x in (a, x) with

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(z_{ax})}{g'(z_{ax})}$$

Then

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{z_{ax} \to a^+} \frac{f'(x)}{g'(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

Note that L'Hopital's rule works for $x \to a^-$, $x \to a$, and also if $\lim_{x\to ?} f(x) = \pm \infty = \lim_{x\to ?} g(x)$

Example 20.3 Show $\lim_{x\to 0} \frac{\sin 2x}{3x} = \frac{2}{3}$.

Solution: $f(x) = \sin 2x$, g(x) = 3x, a = 0. Then

$$\lim_{x \to 0} \sin 2x = 0 = \lim_{x \to 0} 3x$$

By L'Hopital's rule,

$$\lim_{x \to 0} \frac{\sin 2x}{3x} = \lim_{x \to 0} \frac{2\cos x}{3} = \frac{2}{3}$$

20.1 Partitions, Refinements, Integrals - Chapter 6

Definition 20.4 Let a < b and $a = x_0 < x_1 < x_2 < \cdots < x_n = b$. Then $P = \{a = x_0, x_1, \cdots, x_n = b\}$ is a **partition** of [a, b].

A partition is a finite set of points.

Definition 20.5 Let $f : [a, b] \to \mathbb{R}$ be bounded, and $P = \{a = x_0, x_1, \dots, x_n = b\}$ is a partition of [a, b].

Then the **lower sum** is

$$L(f, P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

Where $m_i = \inf\{f(x) : x_{i-1} \le x \le x_i\}$. The **upper sum** is

$$U(f, P) = \sum_{i=1}^{n} M_i (x_i - x_{i-1})$$

Where $M_i = \sup\{f(x) : x_{i-1} \le x \le x_i\}.$

Note that $L(f, P) \leq U(f, P)$.

Example 20.6 Let $f(x) = \sin x, \ 0 \le x \le 2\pi, \ P = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}.$

$$L(f,P) = 0 \cdot \frac{\pi}{2} + 0 \cdot \frac{\pi}{2} - 1 \cdot \frac{\pi}{2} - 1 \cdot \frac{\pi}{2} = -\pi$$
$$U(f,P) = 1 \cdot \frac{\pi}{2} + 1 \cdot \frac{\pi}{2} + 0 \cdot \frac{\pi}{2} + 0 \cdot \frac{\pi}{2} = \pi$$

Example 20.7 $f(x) = x^2, -1 \le x \le 4, P = \{-1, 0, 2, 4\}.$

$$L(f, P) = 0 \cdot 1 + 0 \cdot 2 + 4 \cdot 2 = 8$$
$$U(f, P) = 1 \cdot 1 + 4 \cdot 2 + 16 \cdot 2 = 41$$

Definition 20.8

 P^* is a **refinement** of partition P of [a, b] if P^* has all points of P, and usually additional points.

Also, P^* is a **common refinement** of partitions P, Q of [a, b] if P^* has all points of P and of Q.

Example 20.9 $P = \{0, 1, 2, 4, 5\}, Q = \{0, \frac{1}{2}, 3, 4, 5\} \implies P^* = \{0, \frac{1}{2}, 1, 2, 3, 4, 5\} \text{ or } P^{**} = \{0, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}, 1, 2, 3, 4, 5\}$ Both are common refinements.

Lemma 20.10 (Lemma 6.3) Let P, Q be arbitrary partitions of [a, b], and $f : [a, b] \to \mathbb{R}$ bounded.

Then $L(f, P) \leq U(f, Q)$ (Every lower sum is less than or equal to every upper sum).

Proof. Let P^* be a common refinement of P, Q.

 $L(f, P) \leq L(f, P^*)$, because when we add points, the infimums can only get larger.

 $L(f, P) \leq L(f, P^*) \leq U(f, P^*) \leq U(f, Q)$. (when we add points to the partitions, the supremums can only get smaller)

Definition 20.11
Let $f : [a, b] \to \mathbb{R}$ be bounded.Then the lower integral is $\int_{a}^{b} f = \sup\{L(f, P) : P \text{ partition of } [a, b]$ And the upper integral is $\int_{a}^{\bar{b}} f = \inf\{U(f, P) : P \text{ partition of } [a, b]$

Lemma 20.12 (Lemma 6.4) Let $f : [a, b] \to \mathbb{R}$. Then $\underline{\int}_a^b f \leq \overline{\int}_a^b f$.

Proof. $\underline{\int}_{a}^{b} f = \sup_{P} L(f, P) \leq \inf_{P} U(f, P) = \overline{\int}_{a}^{b} f$

Example 20.13
Let
$$f(x) = c, a \le x \le b$$
, and $P = \{a = x_0, x_1, \cdots, x_n = b\}$.
Then $\sum_{i=1}^{n} m_i(x_i - x_{i-1}) = \sum_{i=1}^{n} c(x_i - x_{i-1}) = c(b - a)$
So, $L(f, P) = c(b - a) = \int_a^b f$
Then $\sum_{i=1}^{n} M_i(x_i - x_{i-1}) = \sum_{i=1}^{n} c(x_i - x_{i-1}) = c(b - a)$

If f(x) = c, $a \le x \le b$, then $\underline{\int}_a^b c = c(b-a) = \overline{\int}_a^b c$

Example 20.14

Let $g(x) = \begin{cases} 0 & x \text{ is rational in } [0,1] \\ 1 & x \text{ is irrational in } [0,1] \end{cases}$, $P = \{a = x_0, x_1, \cdots, x_n = b\}$. Then $\int_0^1 g = 0$ Since $m_i = 0$ for all i. So $\overline{\int}_0^1 g = 1$ Since $m_i = 1$ for all i.