19 Concavity, Cauchy MVT

Example 19.1 (Problem 4.3.6)
$f(x)=x^{4}+2 x^{2}-6 x+2$. Show f has exactly 2 solutions.

Solution: $f(0)=0>0, f(1)=1+2-6+2<0, f$ is contiuous, and so by the IVT there is a solution.
$f^{\prime}(x)=4 x^{3}+2 x-6, f^{\prime \prime}(x)=12 x^{2}+4>0$ for all x.
Then f^{\prime} is strictly increasing on $(-\infty, \infty)$. So, there can only be two solutions.
Example 19.2 (Problem 4.3.15)
Let $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}, g(x) \neq 0$ for all x, and $g(x) f^{\prime}(x)=f^{\prime}(x) g(x)$ for all x.
Show $f=c g$ for some constant c.

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}=\frac{0}{(g(x))^{2}}=0 \quad \text { for all } x
$$

Then by the Identity Criterion, $\frac{f}{g}(x)=c \Longrightarrow f(x)=c(g(x))$ for all x.
Example 19.3 (Problem 4.3.24)
Let $f: \mathbb{R} \rightarrow \mathbb{R}, f^{\prime}$ and $f^{\prime \prime}$ existing for all x. Also, $f(0)=0, f^{\prime}(x) \leq f(x)$ for all x. Must $f \equiv 0$ (identically equal)?

No. $f(x)=1-e^{x}$. Then $f(0)=0, f^{\prime}(x)=-e^{x} \leq 1-e^{x}=f(x)$ for all x.
Note 19.4
Recall the second derivative test:
Let x_{0} be in open interval $I, f: I \rightarrow \mathbb{R}$ with $f^{\prime}, f^{\prime \prime}$ existing on $I . f^{\prime}\left(x_{0}\right)=0$.
Then if $f^{\prime \prime}\left(x_{0}\right)<0$, then $f\left(x_{0}\right)$ is a local maximum value.
If $f^{\prime \prime}\left(x_{0}\right)>0$, then $f\left(x_{0}\right)$ is a local minimum value.

Definition 19.5

Let f be defined on open interval I.

1. If $f^{\prime \prime}>0$ on I, then the graph of f is concave upward on I.
2. If $f^{\prime \prime}<0$ on I, then the graph of f is concave downward on I.
3. Let x_{0} be in I. Assume $f^{\prime}\left(x_{0}\right)$ exists, $f^{\prime \prime}(x)$ exists possibly at x_{0}.

If $f^{\prime \prime}$ changes sign at x_{0}, then $\left(x_{0}, f\left(x_{0}\right)\right)$ is an inflection point of the graph of f.

Example 19.6

$g(x)=x^{4 / 3} \Longrightarrow g^{\prime}(x)=\frac{4}{3} x^{1 / 3}, g^{\prime \prime}(x)=\frac{4}{9} x^{-2 / 3}$.
There is an inflection point at $x=0$.

Example 19.7

$f(x)=3 x^{4}-4 x^{3}$. Find local extreme values, concavity and inflection points.

Solution: $f^{\prime}(x)=12 x^{3}-12 x^{2}=12 x^{2}(x-1)=0$ if $x=0$ or $x=1$.
$f^{\prime \prime}(x)=36 x^{2}-24 x=12 x(3 x-2)=0$ if $x=0$ or $x=\frac{2}{3}$.
$f^{\prime \prime}(0)=0$, so second derivative test doesn't say anything. But $f^{\prime \prime}(1)>0 \Longrightarrow f(1)$ is a local minimum value.

The graph is concave up on $(-\infty, 0)$ and $\left(\frac{2}{3}, \infty\right)$ (because $f^{\prime \prime}>0$ on that interval) and the graph is concave down on ($0, \frac{2}{3}$).

The inflection points are $(0,0),\left(\frac{2}{3},-\frac{16}{27}\right)$.
$\lim _{x \rightarrow \pm \infty} f(x)=\infty$, so we can now graph our function.

```
Example 19.8
h(x)= |x|\Longrightarrow "'(x)=1 if }x>0\Longrightarrow\mp@subsup{h}{}{\prime\prime}(x)=0\mathrm{ if }x>
h'(x)=-1 if }x<0,\mp@subsup{h}{}{\prime\prime}(x)=0\mathrm{ if }x<0
```

In this graph, there is no concavity.
Theorem 19.9 (Cauchy MVT - Thm 4.23)
Let $f:[a, b] \rightarrow \mathbb{R}, g:[a, b] \rightarrow \mathbb{R}$ with f, g continuous on $[a, b]$, differentiable on (a, b), and $g^{\prime}(x) \neq 0$ for all x in (a, b), and $g(a) \neq g(b)$.

Then there is x_{0} in (a, b) with $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}$.
This is an extension of the mean value theorem: MVT is when $g(x)=x, x$ in $[a, b]$.

Proof. Let $h(x)=f(x)-\frac{f(b)-f(a)}{g(b)-g(a)} g(x)$ for $a \leq x \leq b$.
One can show $h(a)=\frac{f(a) g(b)-f(b) g(a)}{g(b)-g(a)}=h(b)$, and h is continuous on $[a, b]$, and $h^{\prime}(x)$ exists on (a, b).
Rolle's theorem implies that there is an x_{0} so that $0=h^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)-\frac{f(b)-f(a)}{g(b)-g(a)} g^{\prime}\left(x_{0}\right)$
So, $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}$.

Theorem 19.10 (Thm 4.24)
Let I be an open interval, $n>0$ integer. Let $f: I \rightarrow \mathbb{R}$, with $f^{(n)}(x)$ existing for x in I.
If $f^{(k)}\left(x_{0}\right)=0$ for $k=0,1, \cdots, n-1$ and x_{0} in I, then for each x in I, there is a z_{n} between x and x_{0} such that $f(x)=\frac{f^{(n)}\left(z_{n}\right)}{n!}\left(x-x_{0}\right)^{n}$.

Proof. (Uses Thm $4.23 n$ times)

Let $g(x)=\left(x-x_{0}\right)^{n}$. Then $\frac{f(x)}{\left(x-x_{0}\right)^{n}}=\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}$.
For some z_{1} between x and $x_{0} \frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}=\frac{f^{\prime}\left(z_{1}\right)}{n\left(z_{1}-x_{0}\right)^{n-1}}=\frac{f^{\prime}\left(z_{1}\right)-f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(z_{1}\right)-g^{\prime}\left(x_{0}\right)}$
For some z_{2} between z_{1} and $x_{0}, \frac{f^{\prime}\left(z_{1}\right)-f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(z_{1}\right)-g^{\prime}\left(x_{0}\right)}=\frac{f^{\prime \prime}\left(z_{2}\right)}{n(n-1)\left(z_{2}-x_{0}\right)^{n-2}}=\cdots=\frac{f^{(n)}\left(z_{n}\right)}{n(n-1) \cdots 2(1)\left(z_{n}-x_{0}\right)^{0}}=\frac{f^{(n)}\left(z_{n}\right)}{n!}$.
So, $f(x)=\frac{f^{(n)}\left(z_{n}\right)}{n!}\left(x-x_{0}\right)^{n}$

