
Lecture 19: Concavity, Cauchy MVT

19 Concavity, Cauchy MVT

Example 19.1 (Problem 4.3.6)
f(x) = x4 + 2x2 − 6x+ 2. Show f has exactly 2 solutions.

Solution: f(0) = 0 > 0, f(1) = 1 + 2− 6 + 2 < 0, f is contiuous, and so by the IVT there is a solution.

f ′(x) = 4x3 + 2x− 6, f ′′(x) = 12x2 + 4 > 0 for all x.
Then f ′ is strictly increasing on (−∞,∞). So, there can only be two solutions.

Example 19.2 (Problem 4.3.15)
Let f : R → R, g : R → R, g(x) ̸= 0 for all x, and g(x)f ′(x) = f ′(x)g(x) for all x.
Show f = cg for some constant c.

(
f

g

)′

(x) =
g(x)f ′(x)− f(x)g′(x)

(g(x))2
=

0

(g(x))2
= 0 for all x

Then by the Identity Criterion, f
g (x) = c =⇒ f(x) = c(g(x)) for all x.

Example 19.3 (Problem 4.3.24)
Let f : R → R, f ′ and f ′′ existing for all x. Also, f(0) = 0, f ′(x) ≤ f(x) for all x. Must f ≡ 0 (identically
equal)?

No. f(x) = 1− ex. Then f(0) = 0, f ′(x) = −ex ≤ 1− ex = f(x) for all x.

Note 19.4
Recall the second derivative test:

Let x0 be in open interval I, f : I → R with f ′, f ′′ existing on I. f ′(x0) = 0.

Then if f ′′(x0) < 0, then f(x0) is a local maximum value.
If f ′′(x0) > 0, then f(x0) is a local minimum value.

Definition 19.5
Let f be defined on open interval I.

1. If f ′′ > 0 on I, then the graph of f is concave upward on I.

2. If f ′′ < 0 on I, then the graph of f is concave downward on I.

3. Let x0 be in I. Assume f ′(x0) exists, f ′′(x) exists possibly at x0.
If f ′′ changes sign at x0, then (x0, f(x0)) is an inflection point of the graph of f .

Example 19.6
g(x) = x4/3 =⇒ g′(x) = 4

3x
1/3, g′′(x) = 4

9x
−2/3.

There is an inflection point at x = 0.

Example 19.7
f(x) = 3x4 − 4x3. Find local extreme values, concavity and inflection points.

Solution: f ′(x) = 12x3 − 12x2 = 12x2(x− 1) = 0 if x = 0 or x = 1.
f ′′(x) = 36x2 − 24x = 12x(3x− 2) = 0 if x = 0 or x = 2

3 .
f ′′(0) = 0, so second derivative test doesn’t say anything. But f ′′(1) > 0 =⇒ f(1) is a local minimum value.
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The graph is concave up on (−∞, 0) and ( 23 ,∞) (because f ′′ > 0 on that interval) and the graph is con-
cave down on (0, 2

3 ).

The inflection points are (0, 0), ( 23 ,−
16
27 ).

limx→±∞ f(x) = ∞, so we can now graph our function.

Example 19.8
h(x) = |x| =⇒ h′(x) = 1 if x > 0 =⇒ h′′(x) = 0 if x > 0
h′(x) = −1 if x < 0, h′′(x) = 0 if x < 0.

In this graph, there is no concavity.

Theorem 19.9 (Cauchy MVT - Thm 4.23)
Let f : [a, b] → R, g : [a, b] → R with f, g continuous on [a, b], differentiable on (a, b), and g′(x) ̸= 0 for all
x in (a, b), and g(a) ̸= g(b).

Then there is x0 in (a, b) with f(b)−f(a)
g(b)−g(a) = f ′(x0)

g′(x0)
.

This is an extension of the mean value theorem: MVT is when g(x) = x, x in [a, b].

Proof. Let h(x) = f(x)− f(b)−f(a)
g(b)−g(a) g(x) for a ≤ x ≤ b.

One can show h(a) = f(a)g(b)−f(b)g(a)
g(b)−g(a) = h(b), and h is continuous on [a, b], and h′(x) exists on (a, b).

Rolle’s theorem implies that there is an x0 so that 0 = h′(x0) = f ′(x0)− f(b)−f(a)
g(b)−g(a) g

′(x0)

So, f(b)−f(a)
g(b)−g(a) = f ′(x0)

g′(x0)
.

Theorem 19.10 (Thm 4.24)
Let I be an open interval, n > 0 integer. Let f : I → R, with f (n)(x) existing for x in I.

If f (k)(x0) = 0 for k = 0, 1, · · · , n − 1 and x0 in I, then for each x in I, there is a zn between x and
x0 such that f(x) = f(n)(zn)

n! (x− x0)
n.

Proof. (Uses Thm 4.23 n times)

Let g(x) = (x− x0)
n. Then f(x)

(x−x0)n
= f(x)−f(x0)

g(x)−g(x0)
.

For some z1 between x and x0,
f(x)−f(x0)
g(x)−g(x0)

= f ′(z1)
n(z1−x0)n−1 = f ′(z1)−f ′(x0)

g′(z1)−g′(x0)

For some z2 between z1 and x0,
f ′(z1)−f ′(x0)
g′(z1)−g′(x0)

= f ′′(z2)
n(n−1)(z2−x0)n−2 = · · · = f(n)(zn)

n(n−1)···2(1)(zn−x0)0
= f(n)(zn)

n! .

So, f(x) = f(n)(zn)
n! (x− x0)

n
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