19 Concavity, Cauchy MVT

Example 19.1 (Problem 4.3.6) $f(x) = x^4 + 2x^2 - 6x + 2$. Show f has exactly 2 solutions.

Solution: f(0) = 0 > 0, f(1) = 1 + 2 - 6 + 2 < 0, f is continuous, and so by the IVT there is a solution.

 $f'(x) = 4x^3 + 2x - 6$, $f''(x) = 12x^2 + 4 > 0$ for all x. Then f' is strictly increasing on $(-\infty, \infty)$. So, there can only be two solutions.

Example 19.2 (Problem 4.3.15) Let $f : \mathbb{R} \to \mathbb{R}$, $g : \mathbb{R} \to \mathbb{R}$, $g(x) \neq 0$ for all x, and g(x)f'(x) = f'(x)g(x) for all x. Show f = cg for some constant c.

$$\left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} = \frac{0}{(g(x))^2} = 0 \quad \text{for all } x$$

Then by the Identity Criterion, $\frac{f}{g}(x) = c \implies f(x) = c(g(x))$ for all x.

Example 19.3 (Problem 4.3.24) Let $f : \mathbb{R} \to \mathbb{R}$, f' and f'' existing for all x. Also, f(0) = 0, $f'(x) \le f(x)$ for all x. Must $f \equiv 0$ (identically equal)?

No. $f(x) = 1 - e^x$. Then f(0) = 0, $f'(x) = -e^x \le 1 - e^x = f(x)$ for all x.

Note 19.4 Recall the second derivative test:

Let x_0 be in open interval $I, f: I \to \mathbb{R}$ with f', f'' existing on $I. f'(x_0) = 0$.

Then if $f''(x_0) < 0$, then $f(x_0)$ is a local maximum value. If $f''(x_0) > 0$, then $f(x_0)$ is a local minimum value.

Definition 19.5

Let f be defined on open interval I.

- 1. If f'' > 0 on I, then the graph of f is **concave upward** on I.
- 2. If f'' < 0 on *I*, then the graph of *f* is **concave downward** on *I*.
- 3. Let x_0 be in *I*. Assume $f'(x_0)$ exists, f''(x) exists possibly at x_0 . If f'' changes sign at x_0 , then $(x_0, f(x_0))$ is an **inflection point** of the graph of *f*.

Example 19.6 $g(x) = x^{4/3} \implies g'(x) = \frac{4}{3}x^{1/3}, g''(x) = \frac{4}{9}x^{-2/3}.$

There is an inflection point at x = 0.

Example 19.7 $f(x) = 3x^4 - 4x^3$. Find local extreme values, concavity and inflection points.

Solution: $f'(x) = 12x^3 - 12x^2 = 12x^2(x-1) = 0$ if x = 0 or x = 1. $f''(x) = 36x^2 - 24x = 12x(3x-2) = 0$ if x = 0 or $x = \frac{2}{3}$. f''(0) = 0, so second derivative test doesn't say anything. But $f''(1) > 0 \implies f(1)$ is a local minimum value. The graph is concave up on $(-\infty, 0)$ and $(\frac{2}{3}, \infty)$ (because f'' > 0 on that interval) and the graph is concave down on $(0, \frac{2}{3})$.

The inflection points are $(0,0), (\frac{2}{3}, -\frac{16}{27}).$

 $\lim_{x\to\pm\infty} f(x) = \infty$, so we can now graph our function.

Example 19.8 $h(x) = |x| \implies h'(x) = 1 \text{ if } x > 0 \implies h''(x) = 0 \text{ if } x > 0$ h'(x) = -1 if x < 0, h''(x) = 0 if x < 0.

In this graph, there is no concavity.

Theorem 19.9 (Cauchy MVT - Thm 4.23) Let $f : [a,b] \to \mathbb{R}$, $g : [a,b] \to \mathbb{R}$ with f, g continuous on [a,b], differentiable on (a,b), and $g'(x) \neq 0$ for all x in (a,b), and $g(a) \neq g(b)$.

Then there is x_0 in (a, b) with $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(x_0)}{g'(x_0)}$.

This is an extension of the mean value theorem: MVT is when g(x) = x, x in [a, b].

Proof. Let
$$h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g(x)$$
 for $a \le x \le b$.

One can show $h(a) = \frac{f(a)g(b) - f(b)g(a)}{g(b) - g(a)} = h(b)$, and h is continuous on [a, b], and h'(x) exists on (a, b).

Rolle's theorem implies that there is an x_0 so that $0 = h'(x_0) = f'(x_0) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(x_0)$ So, $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x_0)}{g'(x_0)}$.

Theorem 19.10 (Thm 4.24)

Let I be an open interval, n > 0 integer. Let $f: I \to \mathbb{R}$, with $f^{(n)}(x)$ existing for x in I.

If $f^{(k)}(x_0) = 0$ for $k = 0, 1, \dots, n-1$ and x_0 in I, then for each x in I, there is a z_n between x and x_0 such that $f(x) = \frac{f^{(n)}(z_n)}{n!} (x - x_0)^n$.

Proof. (Uses Thm 4.23 n times)

Let $g(x) = (x - x_0)^n$. Then $\frac{f(x)}{(x - x_0)^n} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)}$. For some z_1 between x and $x_0, \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(z_1)}{n(z_1 - x_0)^{n-1}} = \frac{f'(z_1) - f'(x_0)}{g'(z_1) - g'(x_0)}$ For some z_2 between z_1 and $x_0, \frac{f'(z_1) - f'(x_0)}{g'(z_1) - g'(x_0)} = \frac{f''(z_2)}{n(n-1)(z_2 - x_0)^{n-2}} = \dots = \frac{f^{(n)}(z_n)}{n(n-1)\dots(z_1)(z_n - x_0)^0} = \frac{f^{(n)}(z_n)}{n!}$. So, $f(x) = \frac{f^{(n)}(z_n)}{n!}(x - x_0)^n$