18 Identity Criterion, Monotonicity, Second Derivative Test

Note 18.1

Recall that the Mean Value Theorem states: Let $f : [a, b] \to \mathbb{R}$ be continuous, and differentiable on (a, b). Then there is an x_0 in (a, b) with $f'(x_0) =$

Let $f: [a, b] \to \mathbb{R}$ be continuous, and differentiable on (a, b). Then there is an x_0 in (a, b) with $f(x_0) = \frac{f(b) - f(a)}{b - a}$.

Lemma 18.2 (Lemma 4.19) Let $f : [a, b] \to \mathbb{R}$ be continuous, f'(x) = 0 for a < x < b. Then f is a constant function.

Proposition 18.3 (Identity Criterion **) Let I be an open interval, and $f: I \to \mathbb{R}$, $g: I \to \mathbb{R}$ with f, g differentiable on I. Then f' = g' on I if and only if there is a constant C with f(x) = g(x) + C for x in I.

Proof. (\Leftarrow) Trivial, since if f(x) = g(x) + C for all x in I, then f' = g'.

(\Longrightarrow) Assume f'=g' on I. Let h(x)=f(x)-g(x) for x in I. Then h'(x)=f'(x)-g'(x)=0 for x in I.

By the above lemma, there is a constant C with h(x) = C for all x in [a, b]. Then C = h(x) = f(x) - g(x), so f(x) = g(x) + C for all x in I.

Example 18.4 $f'(x) = 4x^3 - 6x^2 + 2x - 3 \implies f(x) = x^4 - 2x^3 + x^2 - 3x + C$. (This is the generalized anti derivative) If f(1) = 2, then $2 = f(1) = 1 - 2 + 1 - 3 + C \implies C = 5$.

Corollary 18.5 (Corollary 4.21) If f' > 0 on open interval I, then f is strictly increasing on I.

Proof. Let x, z be in I, with x < z. Then by the MVT, there is some c in (x, z) with $\frac{f(z) - f(x)}{z - x} = f'(c) > 0$. Then $z > x \implies f(z) > f(x)$, so f is strictly increasing on I.

Note 18.6

If f is continuous on [a, b], f' > 0 on (a, b), then f is strictly increasing on [a, b].

If f is continuous on [a, b], f' > 0 on (a, b) except x_1, x_2, \dots, x_n in (a, b), then f is strictly increasing on [a, b].

Example 18.7

Let $f(x) = x^3$. Then f is strictly increasing on $(-\infty, \infty)$ since $f'(x) = 3x^2 > 0$ if $x \neq 0$.

Let $g(x) = x + \sin x$. Then $g'(x) = 1 + \cos x > 0$ if $x \neq \pi + 2n\pi$ for all integers n.

Definition 18.8

Let $f: D \to \mathbb{R}$. Then $x_0 \in D$ is a **local maximizer** if there is a neighborhood U of x_0 with $U \subseteq D$ and $f(x_0) \ge f(x)$ for all x in U.

Similarly, z_0 is a local minimizer if $f(x) \ge f(z_0)$ on a neighborhood of z_0 .

Theorem 18.9 (Second Derivative Test - Thm 4.22) Let x_0 be in open interval $I, f: I \to \mathbb{R}$. Assume f' and f'' exist on I, and $f'(x_0) = 0$.

If $f''(x_0) < 0$, then x_0 is a local maximizer. If $f''(x_0) > 0$, then x_0 is a local minimizer.

Proof. Let $f''(x_0) < 0$. Then for $x \approx x_0$ (x near x_0), we have

$$\frac{f'(x) - f'(x_0)}{x - x_0} = \frac{f'(x)}{x - x_0} \approx f''(x_0) < 0 \implies \text{if } x < x_0, \text{ then } f'(x) > 0. \text{ And if } x > x_0, \text{ then } f'(x) < 0.$$

So $f''(x_0) < 0 \implies x_0$ is a local maximizer.

Example 18.10

 $f(x) = x^4 - 2x^2$, find local maximizers and local minimizers.

Solution: $f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 0$ if x = -1, 0, or 1.

 $f''(x) = 12x^2 - 4$ and $f''(0) < 0 \implies f(0) = 0$ is a local maximum value. $f''(x) = 12x^2 - 4$ and $f''(\pm 1) > 0 \implies f(\pm 1) = -1$ is a local minimum value.