17 Rolle's Theorem, Mean Value Theorem

Note 17.1

Let $f: I \rightarrow \mathbb{R}$. Then x_{0} in I is a maximizer if $f\left(x_{0}\right) \geq f(x)$ for x in I.
Also, x_{0} in I is a minimizer if $f\left(x_{0}\right) \leq f(x)$ for x in I.

Lemma 17.2 (Lemma 4.16)

Let I be a neighborhood of x_{0}. Assume $f: I \rightarrow \mathbb{R}$ and $f^{\prime}\left(x_{0}\right)$ exists.
If x_{0} is a maximizer or minimizer, then $f^{\prime}\left(x_{0}\right)=0$.

Proof. By contradiction.
Assume $f^{\prime}\left(x_{0}\right)>0$. Then if $x \approx x_{0}\left(x\right.$ is near $\left.x_{0}\right)$ and $x>x_{0}$, then $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \approx f^{\prime}\left(x_{0}\right)>0$, so $f(x)>f\left(x_{0}\right)$. Then, x_{0} is not a maximizer.

If $x \approx x_{0}$ and $x<x_{0}$, then $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \approx f^{\prime}\left(x_{0}\right)>0$, so $f(x)<f\left(x_{0}\right)$, so x_{0} is not a minimizer.

Theorem 17.3 (Rolle's Theorem)
Let $f:[a, b] \rightarrow \mathbb{R}$, with f continuous on $[a, b], f^{\prime}$ exists on (a, b).
If $f(a)=f(b)$, then there is x_{0} in (a, b) with $f^{\prime}\left(x_{0}\right)=0$.

Proof. Case 1: If f is constant, then $f^{\prime}\left(x_{0}\right)=0$ for all x_{0} in (a, b).
Case 2: If f is not constant, assume there is x in (a, b) with $f(x)>f(a)=f(b)$.
By the Extreme Value Theorem, there is an x_{0} in (a, b) with $f\left(x_{0}\right)$ being a maximum value.
By our above lemma, this means that $f^{\prime}\left(x_{0}\right)=0$.

Theorem 17.4 (Mean Value Theorem - Thm $4.18{ }^{* * *}$)

Assume $f:[a, b] \rightarrow \mathbb{R}, f$ continuous, f^{\prime} exists on (a, b). Then there is an x_{0} in (a, b) with $f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a}$.

Proof. Equation for the line L connecting $f(a)$ and $f(b): y=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$
Let $h(x)=f(x)-\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right]=$ distance from the graph of f to L.
h is continuous on $[a, b], h$ is differentiable on (a, b).
$h(a)=f(a)-f(a)=0=h(b)$. So by Rolle's theorem, there is an x_{0} in (a, b) with $h^{\prime}\left(x_{0}\right)=0$.
$h^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)-\frac{f(b)-f(a)}{b-a}$, so $f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a}$.

Example 17.5

$f(x)=x^{3}+a x^{2}+b x+c$, with a, b, c constants. Show f has ≤ 3 solutions.

Solution: $f^{\prime}(x)=3 x^{2}+2 a x+b$, so the maximum number of solutions to f^{\prime} is 2 .
By Rolle's theorem, between any 2 solutions of f is a solution of f^{\prime}.
So, the max number of solutions of f is 3 .

Example 17.6

$f(x)=x^{3}+a x^{2}+b x+c$ has ≥ 1 solutions.

Solution: Since $\lim _{x \rightarrow-\infty} f(x)=-\infty$, and $\lim _{x \rightarrow \infty} f(x)=\infty$, and f is continuous on \mathbb{R}, so we use the IVT.

Example 17.7

$f_{1}(x)=x^{3}$ has 1 solution.
$f_{2}(x)=x^{2}(x-1)$ has two solutions.
$f_{3}(x)=x(x-1)(x-2)$ has 3 solutions.

Lemma 17.8 (Lemma 4.19)

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous, $f^{\prime}(x)=0$ for $a<x<b$. Then f is constant.

Solution: Let $a<x<b$.
By the MVT, there is a z_{x} with $a<z_{x}<x$ and $\frac{f(x)-f(a)}{x-a}=f^{\prime}\left(z_{x}\right)=0$. So $f(x)=f(a)$.
Then $f(a)=f(x)$ for all x in (a, b). f continuous on $[a, b]$ means f is constant on $[a, b]$.
Proposition 17.9 (Identity Criterion - Prop $4.20^{* *}$)
Let I be an open interval, $f: I \rightarrow \mathbb{R}, g: I \rightarrow \mathbb{R}$ differentiable on I.
Then $f^{\prime}=g^{\prime}$ on $I \Longleftrightarrow$ there is a constant C with $f(x)=g(x)+C$ for all x in I.

