13 MATH410 Practice Exam 1 Spring 22

1. (a) Example: $a=\sqrt{2}=b . a$ and b are irrational, but $a b=2$.
(b) False. $\left\{(-1)^{n}\right\}_{n=1}^{\infty}$ diverges, $a_{n}=(-1)^{n}$. But $a_{2 n}=1$ for $n \geq 1$, so $\left\{a_{2 n}\right\}_{n=1}^{\infty}$ converges.
(c) True. $\{n\}_{n=1}^{\infty}$ is discrete, so it is continuous.
(d) True by the extreme value theorem.
2. (a) Law of induction: $S(n)=1+3+5 \cdots+2 n-1>n^{2}-1$ for $n \geq 1$.

Base case: $S(1)=1>1^{2}-1=0$, OK.
Induction hypothesis, assume $S(n)$ for an arbitrary $n \geq 1$.
Then, for $n+1: 1+3+\cdots+(2 n-1)+(2 n+1)>\left(n^{2}-1\right)+2 n+1=(n+1)^{2}-1$
(b) The negation is: There exists a real number x such that for all real numbers $y \neq 0$, we have $x y \neq y^{2}-y$.
3. (a) Monotone Convergence Theorem: Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be monotone. Then $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges if and only if it is bounded.
(b) Prove every sequence has a monotone subsequence.

Proof: Case 1: $\left\{a_{n}\right\}$ has an infinite collection $\left\{n_{k}\right\}_{k=1}^{\infty}$ of peak indices. Then $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$ is monotonically decreasing.
Case 2: $\left\{a_{n}\right\}$ has only a finite number up to n^{*} of peak indices. Then $\left\{a_{n}\right\}_{n>n^{*}}^{\infty}$ must have a monotonically increasing subsequence.
4. (a) Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$, where we assume $a_{n}>0$ and n is odd.

Then $\lim _{x \rightarrow \infty} f(x)=\infty$ since x^{n} dominates as $x \rightarrow \infty$.
Also, $\lim _{x \rightarrow-\infty} f(x)=-\infty$...
Let c be an arbitrary number. Then there are some a, b with $a<b$ and $f(a)<c<f(b)$.
Because f is continuous on $[a, b]$, by the IVT, there is an x_{0} in (a, b) with $f\left(x_{0}\right)=c$.
So the range of f is \mathbb{R}.
(b) $g(x)=\sqrt{x}, x \in[4, \infty)$. Prove g is uniformly continuous.

Proof: Let $\left\{u_{n}\right\},\left\{v_{n}\right\}$ be arbitrary in $[4, \infty)$ with $\left|u_{n}-v_{n}\right| \rightarrow 0$.
Then $\left|g\left(u_{n}\right)-g\left(v_{n}\right)\right|=\left|\sqrt{u_{n}}-\sqrt{v_{n}}\right|=\left|\sqrt{u_{n}}-\sqrt{v_{n}}\right|\left|\frac{\sqrt{u_{n}}+\sqrt{v_{n}}}{\sqrt{u_{n}}+\sqrt{v_{n}}}\right|=\frac{\left|u_{n}-v_{n}\right|}{\sqrt{u_{n}}+\sqrt{v_{n}}} \leq \frac{\left|u_{n}-v_{n}\right|}{\sqrt{4}+\sqrt{4}} \rightarrow 0$, so g uniformly continuous.
5. (a) $h(x)=x^{2}$. use epsilon elta to prove it is continuous at $x_{0}=4$.

Proof: Let $\epsilon>0$ be arbitrary. To find $\delta>0$ so $|h(x)-h(4)|=\left|x^{2}-4^{2}\right|<\epsilon$ if $|x-4|<\delta$.
If $|x-4|<1$, then $3<x<5$. Let $\delta=\min (1, \epsilon / 9)$.
Then $\left|x^{2}-4^{2}\right|=|x-4||x+4|<\frac{\epsilon}{9} \cdot 9=\epsilon$.
(b) $\lim _{x \rightarrow 0, x>0} \frac{1-2 / x}{1-1 / \sqrt{x}}=\lim _{x \rightarrow 0, x>0} \frac{(x-2) 1 / x}{(\sqrt{x}-1) 1 / \sqrt{x}}=\lim _{x \rightarrow 0, x>0}\left(\frac{x-2}{\sqrt{x}-1}\right)\left(\frac{1}{\sqrt{x}}\right)=\infty$.

