13 MATH410 Practice Exam 1 Spring 22

- 1. (a) Example: $a = \sqrt{2} = b$. a and b are irrational, but ab = 2.
 - (b) False. $\{(-1)^n\}_{n=1}^{\infty}$ diverges, $a_n = (-1)^n$. But $a_{2n} = 1$ for $n \ge 1$, so $\{a_{2n}\}_{n=1}^{\infty}$ converges.
 - (c) True. $\{n\}_{n=1}^{\infty}$ is discrete, so it is continuous.
 - (d) True by the extreme value theorem.
- 2. (a) Law of induction: $S(n) = 1 + 3 + 5 \dots + 2n 1 > n^2 1$ for $n \ge 1$.

Base case: $S(1) = 1 > 1^2 - 1 = 0$, OK.

Induction hypothesis, assume S(n) for an arbitrary $n \ge 1$. Then, for n + 1: $1 + 3 + \dots + (2n - 1) + (2n + 1) > (n^2 - 1) + 2n + 1 = (n + 1)^2 - 1 \square$

- (b) The negation is: There exists a real number x such that for all real numbers $y \neq 0$, we have $xy \neq y^2 y$.
- 3. (a) Monotone Convergence Theorem: Let $\{a_n\}_{n=1}^{\infty}$ be monotone. Then $\{a_n\}_{n=1}^{\infty}$ converges if and only if it is bounded.
 - (b) Prove every sequence has a monotone subsequence.

<u>Proof</u>: Case 1: $\{a_n\}$ has an infinite collection $\{n_k\}_{k=1}^{\infty}$ of peak indices. Then $\{a_{n_k}\}_{k=1}^{\infty}$ is monotonically decreasing. Case 2: $\{a_n\}$ has only a finite number up to n^* of peak indices. Then $\{a_n\}_{n>n^*}^{\infty}$ must have a

monotonically increasing subsequence. 4. (a) Let $f(x) = a_n x^n + \dots + a_0$, where we assume $a_n > 0$ and n is odd. Then $\lim_{x\to\infty} f(x) = \infty$ since x^n dominates as $x \to \infty$.

Also, $\lim_{x \to -\infty} f(x) = -\infty$... Let c be an arbitrary number. Then there are some a, b with a < b and f(a) < c < f(b). Because f is continuous on [a, b], by the IVT, there is an x_0 in (a, b) with $f(x_0) = c$.

So the range of f is \mathbb{R} .

(b) $g(x) = \sqrt{x}, x \in [4, \infty)$. Prove g is uniformly continuous.

<u>Proof</u>: Let $\{u_n\}, \{v_n\}$ be arbitrary in $[4, \infty)$ with $|u_n - v_n| \to 0$. Then $|g(u_n) - g(v_n)| = |\sqrt{u_n} - \sqrt{v_n}| = |\sqrt{u_n} - \sqrt{v_n}||\frac{\sqrt{u_n} + \sqrt{v_n}}{\sqrt{u_n} + \sqrt{v_n}}| = \frac{|u_n - v_n|}{\sqrt{u_n} + \sqrt{v_n}} \leq \frac{|u_n - v_n|}{\sqrt{4} + \sqrt{4}} \to 0$, so g uniformly continuous.

5. (a) $h(x) = x^2$. use epsilon elta to prove it is continuous at $x_0 = 4$.

Proof: Let $\epsilon > 0$ be arbitrary. To find $\delta > 0$ so $|h(x) - h(4)| = |x^2 - 4^2| < \epsilon$ if $|x - 4| < \delta$.

If |x - 4| < 1, then 3 < x < 5. Let $\delta = \min(1, \epsilon/9)$.

Then $|x^2 - 4^2| = |x - 4||x + 4| < \frac{\epsilon}{9} \cdot 9 = \epsilon.$

(b) $\lim_{x \to 0, x > 0} \frac{1 - 2/x}{1 - 1/\sqrt{x}} = \lim_{x \to 0, x > 0} \frac{(x - 2)1/x}{(\sqrt{x} - 1)1/\sqrt{x}} = \lim_{x \to 0, x > 0} \left(\frac{x - 2}{\sqrt{x} - 1}\right) \left(\frac{1}{\sqrt{x}}\right) = \infty.$