12 MATH410 Practice Exam 1 Fall 22

- 1. (a) $f:[0,1] \to \mathbb{R}$. Let $f(x) = \pi$, $0 \le x \le 1$. Then all $0 \le x \le 1$ are maximizers. Also take $g:[0,1] \to \mathbb{R}$: Let g(0) = 0, $g(x) = \sin \frac{1}{x}$ for $0 \le x \le 1$. Then $g\left(\frac{1}{2n\pi + \pi/2}\right) = \sin(2n\pi + \pi/2) = 1$, for $n \ge 1$.
 - (b) Take f from 1a: the function is monotone, but not strictly monotone.
 - (c) Proof (by induction):

Base case: n = 1. We have 2 = 1(2).

Induction Hypothesis: Assume $2 + 4 + \dots + 2n = n(n+1)$ for an arbitrary $n \ge 1$. Then $2 + 4 + \dots + 2n + 2n + 2 = n(n+1) + 2n + 2$ by the IH. Then $n(n+1) + 2n + 2 = n^2 + 3n + 2 = (n+1)(n+2)$. \Box

2. (a) Assume that $\{c_n\}_{n=1}^{\infty}$ is bounded.

Then if $\{c_n\}$ has an infinite number of peak indices $(n_k)_{k=1}^{\infty}$, then $(c_{n_k})_{k=1}^{\infty}$ is monotonically decreasing.

If $\{c_n\}$ has only a finite number of peak indices, then there is a sequence $(n_k)_{k=1}^{\infty}$ such that $(c_{n_k})_{k=1}^{\infty}$ is monotonically increasing.

Thus $\{c_n\}$ has a monotone subsequence.

Then by the monotone convergence theorem, the subsequence converges because it is bounded and monotone.

- (b) $0 < a_n < 3$ for all $n \ge 1$, and 0 < r < 1. $s_n = a_1r + a_2r^2 + \dots + a_nr^n$. We wish to show this converges. Note: $0 \le s_n \le 3r + 3r^2 + \dots + 3r^n = 3r(1 + r + \dots + r^{n-1}) \le \frac{3r}{1-r}$, so $\{s_n\}$ is bounded, and is monotonically increasing. Then by the monotone convergence theorem, $\{s_n\}$ converges.
- 3. (a) The extreme value theorem states that if $f : [a, b] \to \mathbb{R}$ is continuous, then f has a maximum value and a minimum value.
 - (b) $g:[0,\infty) \to \mathbb{R}$. $g(x) = \frac{1}{\sqrt{x+1}} 2x + x^3$ for $0 \le x$. Show that the range of g contains the interval $[1,\infty)$

Solution: g(0) = 1. Also know $\lim_{x \to \infty} g(x) = \infty$.

Let c be an arbitrary number greater than 1. Then $\lim_{x\to\infty} g(x) = \infty$ implies that there is some b > 0 with g(b) > c.

Then g(0) < c < g(b). Since g is continuous on $[0, \infty)$, so by the IVT, there is some x^* in (0, b) with $g(x^*) = c$.

4. (a) $f(x) = \frac{2}{x}$ for $3 \le x \le 6$. Prove f is uniformly continuous.

Solution: Let $\{u_n\}, \{v_n\} \subseteq [3, 6]$ and arbitrary with $|u_n - v_n| \to 0$.

Then, $|f(u_n) - f(v_n)| = |\frac{2}{u_n} - \frac{2}{v_n}| = 2\frac{|v_n - u_n|}{|u_n||v_n|} \le 2\frac{|v_n - u_n|}{3(3)} \to 0$. So f is uniformly continuous.

(b) Let

$$g(x) = \begin{cases} x - 1 & x < 0\\ x + 1 & x \ge 0 \end{cases}$$

Show g^{-1} exists and is continuous.

Solution: $x < z \implies g(x) < g(z)$ if x, z < 0 or if x, z > 0, and if x < 0, z > 0, then x - 1 < z + 1. so g is one to one.

So, g^{-1} exists.

We have that $x < 0 \implies y = g(x) = x - 1 \implies x = y + 1 \implies g^{-1}(x) = x + 1 \text{ for } x < -1.$ $x \ge 0 \implies y = g(x) = x + 1 \implies x = y - 1 \implies g^{-1}(x) = x - 1 \text{ for } x \ge 1.$

5. (a) $h(x) = x^2$. Use $\epsilon - \delta$ to prove h is continuous at x = 3.

Solution: Let $\epsilon > 0$ be arbitrary. To find $\delta > 0$ so that if $|x - 3| < \delta$, then $|h(x) - h(3)| < \epsilon$.

Then $|h(x) - h(3)| = |x^2 - 3^2| = |x - 3||x + 3|$. Let $\delta = \min(1, \epsilon/7)$. Then $|h(x) - h(3)| = |x - 3||x + 3| < \frac{\epsilon}{7}7 = \epsilon$.

(b) .

$$\lim_{x \to 0} \frac{1 - 2/x^2}{3 - 4/x} = \lim_{x \to 0} \frac{(x^2 - 2)1/x^2}{(3x - 4)1/x} = \lim_{x \to 0} \frac{x^2 - 2}{3x - 4} \frac{1}{x}$$

So, does not exist.