12 MATH410 Practice Exam 1 Fall 22

1. (a) $f:[0,1] \rightarrow \mathbb{R}$. Let $f(x)=\pi, 0 \leq x \leq 1$. Then all $0 \leq x \leq 1$ are maximizers.

Also take $g:[0,1] \rightarrow \mathbb{R}$: Let $g(0)=0, g(x)=\sin \frac{1}{x}$ for $0 \leq x \leq 1$.
Then $g\left(\frac{1}{2 n \pi+\pi / 2}\right)=\sin (2 n \pi+\pi / 2)=1$, for $n \geq 1$.
(b) Take f from 1a: the function is monotone, but not strictly monotone.
(c) Proof (by induction):

Base case: $n=1$. We have $2=1(2)$.
Induction Hypothesis: Assume $2+4+\cdots+2 n=n(n+1)$ for an arbitrary $n \geq 1$.
Then $2+4+\cdots+2 n+2 n+2=n(n+1)+2 n+2$ by the IH.
Then $n(n+1)+2 n+2=n^{2}+3 n+2=(n+1)(n+2)$.
2. (a) Assume that $\left\{c_{n}\right\}_{n=1}^{\infty}$ is bounded.

Then if $\left\{c_{n}\right\}$ has an infinite number of peak indices $\left(n_{k}\right)_{k=1}^{\infty}$, then $\left(c_{n_{k}}\right)_{k=1}^{\infty}$ is monotonically decreasing.
If $\left\{c_{n}\right\}$ has only a finite number of peak indices, then there is a sequence $\left(n_{k}\right)_{k=1}^{\infty}$ such that $\left(c_{n_{k}}\right)_{k=1}^{\infty}$ is monotonically increasing.

Thus $\left\{c_{n}\right\}$ has a monotone subsequence.
Then by the monotone convergence theorem, the subsequence converges because it is bounded and monotone.
(b) $0<a_{n}<3$ for all $n \geq 1$, and $0<r<1$. $s_{n}=a_{1} r+a_{2} r^{2}+\cdots+a_{n} r^{n}$. We wish to show this converges.
Note: $0 \leq s_{n} \leq 3 r+3 r^{2}+\cdots 3 r^{n}=3 r\left(1+r+\cdots+r^{n-1}\right) \leq \frac{3 r}{1-r}$, so $\left\{s_{n}\right\}$ is bounded, and is monotonically increasing.
Then by the monotone convergence theorem, $\left\{s_{n}\right\}$ converges.
3. (a) The extreme value theorem states that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f has a maximum value and a minimum value.
(b) $g:[0, \infty) \rightarrow \mathbb{R} . g(x)=\frac{1}{\sqrt{x+1}}-2 x+x^{3}$ for $0 \leq x$. Show that the range of g contains the interval $[1, \infty)$

Solution: $g(0)=1$. Also know $\lim _{x \rightarrow \infty} g(x)=\infty$.
Let c be an arbitrary number greater than 1 .
Then $\lim _{x \rightarrow \infty} g(x)=\infty$ implies that there is some $b>0$ with $g(b)>c$.
Then $g(0)<c<g(b)$. Since g is continuous on $[0, \infty)$, so by the IVT, there is some x^{*} in $(0, b)$ with $g\left(x^{*}\right)=c$.
4. (a) $f(x)=\frac{2}{x}$ for $3 \leq x \leq 6$. Prove f is uniformly continuous.

Solution: Let $\left\{u_{n}\right\},\left\{v_{n}\right\} \subseteq[3,6]$ and arbitrary with $\left|u_{n}-v_{n}\right| \rightarrow 0$.
Then, $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right|=\left|\frac{2}{u_{n}}-\frac{2}{v_{n}}\right|=2 \frac{\left|v_{n}-u_{n}\right|}{\left|u_{n}\right|\left|v_{n}\right|} \leq 2 \frac{\left|v_{n}-u_{n}\right|}{3(3)} \rightarrow 0$. So f is uniformly continuous.
(b) Let

$$
g(x)= \begin{cases}x-1 & x<0 \\ x+1 & x \geq 0\end{cases}
$$

Show g^{-1} exists and is continuous.
Solution: $x<z \Longrightarrow g(x)<g(z)$ if $x, z<0$ or if $x, z>0$, and if $x<0, z>0$, then $x-1<z+1$. so g is one to one.

So, g^{-1} exists.
We have that
$x<0 \Longrightarrow y=g(x)=x-1 \Longrightarrow x=y+1 \Longrightarrow g^{-1}(x)=x+1$ for $x<-1$.
$x \geq 0 \Longrightarrow y=g(x)=x+1 \Longrightarrow x=y-1 \Longrightarrow g^{-1}(x)=x-1$ for $x \geq 1$.
5. (a) $h(x)=x^{2}$. Use $\epsilon-\delta$ to prove h is continuous at $x=3$.

Solution: Let $\epsilon>0$ be aribtrary. To find $\delta>0$ so that if $|x-3|<\delta$, then $|h(x)-h(3)|<\epsilon$.
Then $|h(x)-h(3)|=\left|x^{2}-3^{2}\right|=|x-3||x+3|$. Let $\delta=\min (1, \epsilon / 7)$. Then $|h(x)-h(3)|=$ $|x-3||x+3|<\frac{\epsilon}{7} 7=\epsilon$.
(b) .

$$
\lim _{x \rightarrow 0} \frac{1-2 / x^{2}}{3-4 / x}=\lim _{x \rightarrow 0} \frac{\left(x^{2}-2\right) 1 / x^{2}}{(3 x-4) 1 / x}=\lim _{x \rightarrow 0} \frac{x^{2}-2}{3 x-4} \frac{1}{x}
$$

So, does not exist.

