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1. (a) f : [0, 1] → R. Let f(x) = π, 0 ≤ x ≤ 1. Then all 0 ≤ x ≤ 1 are maximizers.

Also take g : [0, 1] → R: Let g(0) = 0, g(x) = sin 1
x for 0 ≤ x ≤ 1.

Then g
(

1
2nπ+π/2

)
= sin(2nπ + π/2) = 1, for n ≥ 1.

(b) Take f from 1a: the function is monotone, but not strictly monotone.

(c) Proof (by induction):

Base case: n = 1. We have 2 = 1(2).

Induction Hypothesis: Assume 2 + 4 + · · ·+ 2n = n(n+ 1) for an arbitrary n ≥ 1.
Then 2 + 4 + · · ·+ 2n+ 2n+ 2 = n(n+ 1) + 2n+ 2 by the IH.
Then n(n+ 1) + 2n+ 2 = n2 + 3n+ 2 = (n+ 1)(n+ 2). □

2. (a) Assume that {cn}∞n=1 is bounded.

Then if {cn} has an infinite number of peak indices (nk)
∞
k=1, then (cnk

)∞k=1 is monotonically de-
creasing.
If {cn} has only a finite number of peak indices, then there is a sequence (nk)

∞
k=1 such that (cnk

)∞k=1

is monotonically increasing.

Thus {cn} has a monotone subsequence.

Then by the monotone convergence theorem, the subsequence converges because it is bounded
and monotone.

(b) 0 < an < 3 for all n ≥ 1, and 0 < r < 1. sn = a1r + a2r
2 + · · · + anr

n. We wish to show this
converges.
Note: 0 ≤ sn ≤ 3r + 3r2 + · · · 3rn = 3r(1 + r + · · · + rn−1) ≤ 3r

1−r , so {sn} is bounded, and is
monotonically increasing.
Then by the monotone convergence theorem, {sn} converges.

3. (a) The extreme value theorem states that if f : [a, b] → R is continuous, then f has a maximum value
and a minimum value.

(b) g : [0,∞) → R. g(x) = 1√
x+1

−2x+x3 for 0 ≤ x. Show that the range of g contains the interval [1,∞)

Solution: g(0) = 1. Also know limx→∞ g(x) = ∞.

Let c be an arbitrary number greater than 1.
Then limx→∞ g(x) = ∞ implies that there is some b > 0 with g(b) > c.

Then g(0) < c < g(b). Since g is continuous on [0,∞), so by the IVT, there is some x∗ in (0, b) with
g(x∗) = c.

4. (a) f(x) = 2
x for 3 ≤ x ≤ 6. Prove f is uniformly continuous.

Solution: Let {un}, {vn} ⊆ [3, 6] and arbitrary with |un − vn| → 0.

Then, |f(un)− f(vn)| = | 2
un

− 2
vn

| = 2 |vn−un|
|un||vn| ≤ 2 |vn−un|

3(3) → 0. So f is uniformly continuous.

(b) Let

g(x) =

{
x− 1 x < 0

x+ 1 x ≥ 0

Show g−1 exists and is continuous.

Solution: x < z =⇒ g(x) < g(z) if x, z < 0 or if x, z > 0, and if x < 0, z > 0, then x− 1 < z + 1. so
g is one to one.
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So, g−1 exists.

We have that
x < 0 =⇒ y = g(x) = x− 1 =⇒ x = y + 1 =⇒ g−1(x) = x+ 1 for x < −1.
x ≥ 0 =⇒ y = g(x) = x+ 1 =⇒ x = y − 1 =⇒ g−1(x) = x− 1 for x ≥ 1.

5. (a) h(x) = x2. Use ϵ− δ to prove h is continuous at x = 3.

Solution: Let ϵ > 0 be aribtrary. To find δ > 0 so that if |x− 3| < δ, then |h(x)− h(3)| < ϵ.

Then |h(x) − h(3)| = |x2 − 32| = |x − 3||x + 3|. Let δ = min(1, ϵ/7). Then |h(x) − h(3)| =
|x− 3||x+ 3| < ϵ

77 = ϵ.

(b) .

lim
x→0

1− 2/x2

3− 4/x
= lim

x→0

(x2 − 2)1/x2

(3x− 4)1/x
= lim

x→0

x2 − 2

3x− 4

1

x

So, does not exist.
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