11 Limits

11.1 Limits

Note 11.1

Suppose f is uniformly continuous on set S, and $R \subseteq S$. Then f is uniformly continuous on T.

Proof. Let $\left\{u_{n}\right\},\left\{v_{n}\right\} \subseteq T$ be arbitrary with $\left|u_{n}-v_{n}\right| \rightarrow 0$. Then $\left\{u_{n}\right\},\left\{v_{n}\right\} \subseteq S$ and $\left|u_{-} v_{n}\right| \rightarrow 0$. By theorem 3.17 (if f is continuous on $[a, b]$, then f is uniformly continuous on $[a, b]$), $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right| \rightarrow 0$.

Example 11.2

Let $f(x)=x^{5}+3 x^{3}+3$. Find an x_{0} so that $f\left(x_{0}\right)=4$.

Solution:
f is continuous on \mathbb{R} since f is a polynomial. $f(0)=3, f(1)=7$, so by the IVT, there is an x_{0} in $(0,1)$ with $f\left(x_{0}\right)=4$.

Question: is there a second $z_{0} \neq x_{0}$ with $z_{0} \in[0, \infty)$ and $f\left(z_{0}\right)=4$?
Note: $0<x$ and $0<z$ with $x<z \Longrightarrow f(x)<f(z)$.
Answer: No, there is no $z_{0}>0, z_{0} \neq x_{0}$ and $f\left(z_{0}\right)=4$.
Definition 11.3
If $D \subseteq R$, then x_{0} is a limit point of D if there is a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subseteq D$ with $x_{n} \neq x_{0}$ for all n, and $x_{n} \rightarrow x_{0}$.

Note 11.4
If $D=\mathbb{Q}$, then \mathbb{R} is the collection of limit points of \mathbb{Q}.
Isolated points of D can not be limit points of D.
Thus, \mathbb{N} has no limit points because they are all isolated.
$D=(0,1] \Longrightarrow$ the limits points are the set $[0,1]$.

Definition 11.5

Let $f: D \rightarrow \mathbb{R}$, and x_{0} is a limit point of D.
Then, $\lim _{x \rightarrow x_{0}} f(x)=L$ if whenever $\left(x_{n}\right)_{n=1}^{\infty} \subseteq D, x_{n} \rightarrow x_{0}, x_{n} \neq x_{0}$ for all n, then $f\left(x_{n}\right) \rightarrow L$.
We say L is the limit of $f(x)$ as $x \rightarrow x_{0}$.

Example 11.6

1. $\lim _{x \rightarrow 1} \frac{x^{3}-3 x+2}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x-2)}{x-1}=\lim _{x \rightarrow 1} x-2=-1$
2. $f(x)=\sqrt{x}, x \geq 0$. Then $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0, x>0} \sqrt{x}=0$
3. $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{1}{4}$
4. $g(t)=\sin t$. Show $\lim _{t \rightarrow 0} g(t)=0$.

Solution: Note that $0 \leq|g(t)|=|\sin t| \leq|t| \rightarrow 0$.
So, $\lim _{t \rightarrow 0} g(t)=0$.
5. $h(t)=\frac{1}{\sin t}$. Show that $\lim _{t \rightarrow 0} h(t)$ does not exist.

Solution: Let $t_{n}=\frac{1}{n \pi+\pi / 2}$. Then

$$
h(t)=\sin \left(n \pi+\frac{\pi}{2}\right)= \begin{cases}1 & \text { if } n \text { even } \\ -1 & \text { if } n \text { odd }\end{cases}
$$

So, the limit does not exist.

Theorem 11.7 (Limit Rules)
Let $\lim _{x \rightarrow x_{0}} f(x)=L$ and $\lim _{x \rightarrow x_{0}} g(x)=M$. Then

1. Sum Rule: $\lim _{x \rightarrow x_{0}}(f+g) x=L+M$
2. Product Rule: $\lim _{x \rightarrow x_{0}}(f(x) g(x))=\left(\lim _{x \rightarrow x_{0}} f(x)\right)\left(\lim _{x \rightarrow x_{0}} g(x)\right)$.

In solution, $|f(x) g(x)-L M| \leq|f(x) g(x)-f(x) M|+|f(x) M-L M|=|f(x)||g(x)-M|+|f(x)-L| M \rightarrow$ 0.
3. Quotient Rule: Note that we must have $M \neq 0$.

Theorem 11.8 (Composite Theorem - Thm 3.37)
$\lim _{x \rightarrow x_{0}} g(f(x))=L$ if $\lim _{y \rightarrow y_{0}} g(y)=L$, etc.

Example 11.9

$\lim _{x \rightarrow 2} \sqrt{9-x^{2}}=\lim _{y \rightarrow 5} \sqrt{y}=\sqrt{5}$

