10 Monotonicity, Inverse Functions

Note 10.1

A rational function is of the form $g(x)=\frac{p(x)}{q(x)}$ where p, q are polynomials. The function $f(x)=\sqrt{x}$ is not rational function.

Example 10.2

If f is uniformly continuous on $[a, b]$ and on $[b, c]$, then is f uniformlycontinuous on $[a, c]$?

Solution: Yes.

If f is uniformly continuous on $[a, b]$, then f is continuous on $[a, b]$.
If f is uniformly continuous on $[b, c]$, then f is continuous on $[b, c]$.
Then, f is continuous on $[a, c]$, and thus f is uniformly continuous on $[a, c]$.

10.1 Monotonicity

Definition 10.3

Let $f: D \rightarrow \mathbb{R}$. Then f is monotone increasing (i.e. increasing) if whenever x, z are in $D, x<z$, then $f(x) \leq f(z)$.

Let $f: D \rightarrow \mathbb{R}$. Then f is monotone decreasing (i.e. decrasing) if whenever x, z are in $D, x<z$, then $f(x) \geq f(z)$.

Note that both of these definitions allow for a constant function.
Let $f: D \rightarrow \mathbb{R}$. Then f is strictly increasing if whenever x, z are in $D, x<z$, then $f(x)<f(z)$.
Let $f: D \rightarrow \mathbb{R}$. Then f is strictly decreasing if whenever x, z are in $D, x<z$, then $f(x)>f(z)$.

Definition 10.4
$f: D \rightarrow \mathbb{R}$ is monotone if f is increasing or is decreasing.

Example 10.5

$f(x)=x^{3}$ is strictly increasing: $x<z \Longrightarrow x^{3}<z^{3}$
$g(x)=\left\{\begin{array}{ll}-1 & x<0 \\ 1 & x \geq 0\end{array}\right.$ is increasing, not strictly increasing.

Theorem 10.6 (Thm 3.23)
Assume $f: D \rightarrow \mathbb{R}$ (read " f is a mapping from D to the reals") is monotone and $f(D)$ is an interval. Then f is continuous.

Proof. By contradiction. Assume f is increasing, and assume f is not continuous at x_{0} in D.
Then there is an $\epsilon>0$ such that there is a sequence $\left\{u_{n}\right\}_{n=1}^{\infty} \subseteq D$ with $u_{n} \rightarrow x_{0}$, but $\left|f\left(u_{n}\right)-f\left(x_{0}\right)\right| \geq \epsilon$ for all n.
In any case, $f(D)$ (the range) is not an interval (because there is an open space in there). Contradiction.

10.2 Inverse Functions

Definition 10.7

$f: D \rightarrow \mathbb{R}$ is one-to-one (written 1-1) if whenever x, z are in D and $x \neq z$, then $f(x) \neq f(z)$.

Note 10.8

If f is $1-1$, then it passes the horizontal line test (i.e. any horizontal line can touch the graph of f at most once).

If f is strictly monotone, then f is 1-1.
But note that the converse is not always true. Ex: $g(x)=\frac{1}{x}$ is $1-1$, but is not monotone.
A function can be monotone but not 1-1. Ex: any constant function.

Definition 10.9
Let $f: D \rightarrow \mathbb{R}$ be 1-1. Then f has an inverse $f^{-1}: f^{-1}(y)=x \Longleftrightarrow f(x)=y$.

Note 10.10

The domain of f^{-1} is the range of f, and vice versa.
The graph of f^{-1} is symmetric to the graph of f with respect to the line $y=x$.
$f^{-1}(f(x))=x$ for all x in the domain of f.
f^{-1} is almost never equal to f. Exceptions: $f(x)=x$, and $g(x)=\frac{1}{x}$.

Example 10.11

$g(x)=x^{3}+2$. Show g^{-1} exists, and find a formula for it.

Solution:
$f(x)=x^{3} \Longrightarrow f$ is $1-1$. Then $x \neq z \Longrightarrow x^{3}+2 \neq z^{3}+2$, so g is $1-1$.
To find $g^{-1}: y=x^{3}+2 \Longrightarrow y-2=x^{3} \Longrightarrow(y-2)^{1 / 3}=x$. Then, $g^{-1}(x)=(x-2)^{1 / 3}$.
Note that here, we wrote g^{-1} as a function of x.

