
Lecture 1: Introduction (Sec 1.1, 1.2)

1 Introduction

1.1 Law of Induction ***
Used when we wish to prove a statement S(n) is valid for all n ≥ n0 (usually n0 = 0 or 1)

The steps are as follows:

1. Base case: S(n0) to prove

2. Induction Hypothesis: Assume S(n) is valid for an arbitrary n ≥ n0. Then prove that S(n+ 1) is valid.

Example 1.1
Prove that 2n > n for n ≥ 1.

Proof. By induction:
Base case: 21 = 2 > 1, true.
Induction Hypothesis: Assume 2n > n for an arbitrary n ≥ 1.

2n+1 = 2(2n) >IH 2(n) = n+ n ≥ n+ 1

Thus, the induction implies that 2n > n for n ≥ 1.

1.2 Proof by Contradiction **
Used when we wish to prove that P =⇒ Q. We assume not Q, and prove not P .

Note
P =⇒ Q is equivalent to not Q =⇒ not P .

1.3 Rationals vs Irrationals
A real number x is rational if there are integers p, q with x = p

q , q ̸= 0, and p
q is in reduced form (no common

nontrivial divisor of p and q)

8
6 is not in reduced form: 4

3 is.

The irrational numbers are all non-rationals.

Example 1.2
Prove that

√
5 is irrational.

Proof. By contradiction: Assume
√
5 = p

q in reduced form, p, q integers.
Then, p =

√
5q, so p2 = 5q2, so 5|p2, so 5|p (by arithmetic laws)

Let 5r = p, with r ∈ Z. then 5q2 = p2 = 25r2, so q2 = 5r2, so 5|q

Then, 5|p and 5|q, so p
q is not in reduced form. Contradiction.

1.4 Upper bounds

Definition 1.3
A set S ⊆ R has an upper bound b if b ≥ x for all x in S.
A set S ⊆ R has a lower bound c if c ≤ x for all x in S.
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Definition 1.4
If b is the smallest upper bound of S, then b is the least upper bound of S (lub S), which is the supremum
of S (supS).
If c is the largest lower bound of S, then c is the greatest lower bound of S (glb S), which is the infimum
of S (inf S)

Axiom 1.5 (Completeness Axiom / Least Upper Bound Axiom)
If S has an upper bound, S has a supS.
If S has an lower bound, S has an inf S.

Example 1.6
S1 = {x ∈ R : x2 < 2}, supS1 =

√
2, inf S1 = −

√
2

S2 = rationals < 1. supS2 = 1, inf S does not exist. (The supremum and infimum must be numbers)
S3 = irrationals < 1. supS3 = 1, inf S3 does not exist.
S4 = { 1

n}
∞
n=1, supS4 = 1, inf S4 = 0

S5 = {1, 2, 3, · · · }. supS5 does not exist, inf S5 = 1

1.5 Archimedean Property ***

Property 1.7 (Archimedean Property)
For any c > 0, there is an integer n > c.
Equivalently, for any c > 0, there is an integer n with 0 < 1

n < c.

Theorem 1.8
Let a < b. Then there is a rational number in (a, b).

Proof. Assume 0 < a < b. So, b− a > 0.
By the Archimedean Property, there is an integer n with 0 < 1

n < b−a
2 .

Then, 2
n < b− a, so a+ 2

n < b, so a < a+ 1
n < a+ 2

n < b.
Note that (a + 2

n ) − (a + 1
n ) = 1

n , and so because there is a gap of length 1
n , there must be some k

n in
[a+ 1

n , a+ 2
n ] ⊆ (a, b)

If a < b < 0, then just look at 0 < −b < −a, and find the rational in (−b,−a)

If a < 0 < b, then 0 is the rational.
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