1 Introduction

1.1 Law of Induction ***

Used when we wish to prove a statement S(n) is valid for all $n \ge n_0$ (usually $n_0 = 0$ or 1)

The steps are as follows:

- 1. Base case: $S(n_0)$ to prove
- 2. Induction Hypothesis: Assume S(n) is valid for an <u>arbitrary</u> $n \ge n_0$. Then prove that S(n+1) is valid.

Example 1.1 Prove that $2^n > n$ for $n \ge 1$.

Proof. By induction: Base case: $2^1 = 2 > 1$, true. Induction Hypothesis: Assume $2^n > n$ for an arbitrary $n \ge 1$.

$$2^{n+1} = 2(2^n) >_{IH} 2(n) = n+n \ge n+1$$

Thus, the induction implies that $2^n > n$ for $n \ge 1$.

1.2 Proof by Contradiction **

Used when we wish to prove that $P \implies Q$. We assume not Q, and prove not P.

Note $P \implies Q$ is equivalent to not $Q \implies \text{not } P$.

1.3 Rationals vs Irrationals

A real number x is rational if there are integers p, q with $x = \frac{p}{q}, q \neq 0$, and $\frac{p}{q}$ is in reduced form (no common nontrivial divisor of p and q)

 $\frac{8}{6}$ is not in reduced form: $\frac{4}{3}$ is.

The irrational numbers are all non-rationals.

Example 1.2 Prove that $\sqrt{5}$ is irrational.

Proof. By contradiction: Assume $\sqrt{5} = \frac{p}{q}$ in reduced form, p, q integers. Then, $p = \sqrt{5}q$, so $p^2 = 5q^2$, so $5|p^2$, so 5|p (by arithmetic laws) Let 5r = p, with $r \in \mathbb{Z}$. then $5q^2 = p^2 = 25r^2$, so $q^2 = 5r^2$, so 5|q

Then, 5|p and 5|q, so $\frac{p}{q}$ is not in reduced form. Contradiction.

1.4 Upper bounds

```
Definition 1.3
A set S \subseteq R has an upper bound b if b \ge x for all x in S.
A set S \subseteq R has a lower bound c if c \le x for all x in S.
```

Definition 1.4

If b is the smallest upper bound of S, then b is the **least upper bound** of S (lub S), which is the supremum of S (sup S).

If c is the largest lower bound of S, then c is the **greatest lower bound** of S (glb S), which is the infimum of S (inf S)

Axiom 1.5 (Completeness Axiom / Least Upper Bound Axiom)

If S has an upper bound, S has a $\sup S$.

If S has an lower bound, S has an $\inf S$.

Example 1.6 $S_1 = \{x \in \mathbb{R} : x^2 < 2\}$, $\sup S_1 = \sqrt{2}$, $\inf S_1 = -\sqrt{2}$ $S_2 = \operatorname{rationals} < 1$. $\sup S_2 = 1$, $\inf S$ does not exist. (The supremum and infimum must be numbers) $S_3 = \operatorname{irrationals} < 1$. $\sup S_3 = 1$, $\inf S_3$ does not exist. $S_4 = \{\frac{1}{n}\}_{n=1}^{\infty}$, $\sup S_4 = 1$, $\inf S_4 = 0$ $S_5 = \{1, 2, 3, \cdots\}$. $\sup S_5$ does not exist, $\inf S_5 = 1$

1.5 Archimedean Property ***

Property 1.7 (Archimedean Property) For any c > 0, there is an integer n > c. Equivalently, for any c > 0, there is an integer n with $0 < \frac{1}{n} < c$.

Theorem 1.8 Let a < b. Then there is a rational number in (a, b).

Proof. Assume 0 < a < b. So, b - a > 0. By the Archimedean Property, there is an integer n with $0 < \frac{1}{n} < \frac{b-a}{2}$. Then, $\frac{2}{n} < b - a$, so $a + \frac{2}{n} < b$, so $a < a + \frac{1}{n} < a + \frac{2}{n} < b$. Note that $(a + \frac{2}{n}) - (a + \frac{1}{n}) = \frac{1}{n}$, and so because there is a gap of length $\frac{1}{n}$, there must be some $\frac{k}{n}$ in $[a + \frac{1}{n}, a + \frac{2}{n}] \subseteq (a, b)$

If a < b < 0, then just look at 0 < -b < -a, and find the rational in (-b, -a)

If a < 0 < b, then 0 is the rational.