Lecture 1: Introduction (Sec 1.1, 1.2)

1 Introduction

1.1 Law of Induction **¥*

Used when we wish to prove a statement S(n) is valid for all n > ng (usually ng =0 or 1)

The steps are as follows:
1. Base case: S(ng) to prove

2. Induction Hypothesis: Assume S(n) is valid for an arbitrary n > ng. Then prove that S(n + 1) is valid.

Example 1.1
Prove that 2™ > n for n > 1.

Proof. By induction:
Base case: 2! =2 > 1, true.
Induction Hypothesis: Assume 2" > n for an arbitrary n > 1.

2" =2(2") >ip 2(n) =n+n>n+1

Thus, the induction implies that 2™ > n for n > 1. [

1.2 Proof by Contradiction **

Used when we wish to prove that P =— . We assume not @), and prove not P.

Note
P = @ is equivalent to not ) = not P.

1.3 Rationals vs Irrationals

A real number x is rational if there are integers p, ¢ with x = %, q # 0, and f}i is in reduced form (no common
nontrivial divisor of p and q)

% is not in reduced form: % is.

The irrational numbers are all non-rationals.

Example 1.2
Prove that /5 is irrational.

Proof. By contradiction: Assume /5 = % in reduced form, p, ¢ integers.
Then, p = v/5¢q, so p? = 5¢2, so 5|p?, so 5|p (by arithmetic laws)
Let 5r = p, with r € Z. then 5¢ = p? = 2512, so ¢®> = 512, so 5|q

Then, 5|p and 5|q, so % is not in reduced form. Contradiction. O

1.4 Upper bounds

Definition 1.3
A set S C R has an upper bound b if b > x for all z in S.
A set S C R has a lower bound cif ¢ < z for all z in S.
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Definition 1.4

If b is the smallest upper bound of S, then b is the least upper bound of S (lub S), which is the supremum
of S (sup S).

If ¢ is the largest lower bound of S, then c is the greatest lower bound of S (glb S), which is the infimum
of S (inf S)

Axiom 1.5 (Completeness Axiom / Least Upper Bound Axiom)
If S has an upper bound, S has a sup S.
If S has an lower bound, S has an inf S.

Example 1.6

Si={reR:22<2},supS; = V2, inf S; = —/2

Sy = rationals < 1. sup Sy = 1, inf S does not exist. (The supremum and infimum must be numbers)
S3 = irrationals < 1. supS3 = 1, inf S5 does not exist.

Sy={1}>,,supSy=1,inf Sy =0

S5 ={1,2,3,---}. sup S5 does not exist, inf S5 =1

1.5 Archimedean Property ***

Property 1.7 (Archimedean Property)
For any ¢ > 0, there is an integer n > c.
Equivalently, for any ¢ > 0, there is an integer n with 0 < % <ec.

Theorem 1.8
Let a < b. Then there is a rational number in (a,b).

Proof. Assume 0 < a <b. So, b—a > 0.

By the Archimedean Property, there is an integer n with 0 < % < I’_Ta.
Then,%<b—a7soa+%<b,soa<a+%<a+%<b.

Note that (a + 2) — (a+ 2) = 1, and so because there is a gap of length X, there must be some £
la+ 5.0+ 21 C (a:b)

If a < b < 0, then just look at 0 < —b < —a, and find the rational in (—b, —a)

If a < 0 < b, then 0 is the rational.
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