9 Introduction to Markov Chains (Section 3.1)

9.1 Introduction to Markov Chains (Section 3.1)

Definition 9.1

A Markov chain is a system relating states with a probability of moving (transitioning) between 2 states. The probability only depends on the current and next state, regardless of how long the process goes.

Examples of Markov chains include:

1. Insurance policies: states depend on age, health, marital status, etc.

Look at past statistics to determine what states a person might go to, and premiums might be raised in certain situations.
2. Mazes: which adjacent rooms might a player go to, with what probabilities?

If we move randomly through this maze, which room should I begin in to reach room 7 with the highest probability after 20 moves?
3. Cybersecurity graphs: states are vulnerable positions, some states cause a full breach. We wish to construct a system so that the probability of reaching a full breach is low.
4. Google PageRank: why does Wikipedia usually come up as the first result of a Google seearch? Because there are many websites that are linking to Wikipedia, making more popular.

Definition 9.2

The transition matrix P of a Markov chain with n states is an $n \times n$ matrix whose $i j$ th entry is the probability of going from state j (column) to state i (row) in 1 transition.

Example 9.3

In a game, you win or lose. If you win, there is a 60% chance you win the next game. If you lose, there is a 25% chance you win next.

In our example, ROWS AND COLUMNS: W L

$$
\left.P=\begin{array}{l}
W \\
L
\end{array} \begin{array}{cc}
W & L \\
0.6 & 0.25 \\
0.4 & 0.75
\end{array}\right)
$$

We assume a transtion always occurs (possibly to itself). Notice how the column sums must always be 1, because we always transition to a state (even if it is the one we are currently at).
These column sums are called probability vectors (non-negative values).
Square matrices whose columns are probability vectors are called stochastic matrices.

Definition 9.4

Let \vec{x}_{k} be the state vector of a Markov chain: a column vector whose i th entry is the probability it is in state i after k transitions.

Example 9.5

In the game example, suppose you are given that you start in the W state.
Then, we have that

$$
\vec{x}_{0}=\begin{aligned}
& W \\
& L
\end{aligned}\binom{1}{0}
$$

And it follows that

$$
W \quad L
$$

$$
\begin{aligned}
& W \\
& L
\end{aligned}\left(\begin{array}{cc}
0.6 & 0.25 \\
0.4 & 0.75
\end{array}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right]=\vec{x}_{1}
$$

Which tells us that there is a 40% chance to go to the L state in 1 move, given that we start in W.
What if you start in W and want the probabilities after 2 transitions? We wish to find \vec{x}_{2}.
The two possibilities of state paths we can take to end up on loss on the 2 nd turn is $W \rightarrow L \rightarrow L$ or $W \rightarrow W \rightarrow L$.
We can calculate these probabilities manually: $(0.4)(0.75)+(0.6)(0.4)$. If we were to do calculations like this, our vector \vec{x}_{2} would look like the following:

$$
\vec{x}_{2}=\left[\begin{array}{l}
(0.6)(0.6)+(0.4)(0.25) \\
(0.6)(0.4)+(0.4)(0.75)
\end{array}\right]
$$

But notice how we could do this more simply with our transition matrix:

$$
\left[\begin{array}{ll}
0.6 & 0.25 \\
0.4 & 0.75
\end{array}\right]\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right]=P \vec{x}_{1}=P\left(P \vec{x}_{0}\right)=P^{2} \vec{x}_{0}=\vec{x}_{2}
$$

\vec{x}_{2} is created using P^{2} ! These state vectors depend on the powers of $P!$

