
Lecture 8: Principal Component Analysis, Image Compression

8 rincipal Component Analysis, Image Compression

8.1 Principal Component Analysis (PCA)
PCA is a method of working with n points in Rm, and finding a k-dimensional space (k < m) spanned by
orthonormal vectors v⃗1, · · · , v⃗k so thatthe points have the greatest variance relative to direction v⃗i (reduce the
dimensionality so that all of the points look pretty spread out).

Definition 8.1
Given {a⃗1, · · · , a⃗n}, the sample variance relative to µ of the set is

σ2 =
1

n− 1

n∑
i=1

||⃗ai − µ⃗||2

We assume everything relative to the origin, so

σ2 =
1

n− 1

n∑
i=1

||⃗ai||2

The covariance matrix is
C =

1

n− 1
ATA

Observe

1

n− 1


a⃗1 −→
a⃗2 −→...
a⃗n −→

[
a⃗1 a⃗2 · · · a⃗n
↓ ↓ ↓

]
=

1

n− 1


||⃗a1||2

||⃗b2||2
. . .

||⃗an||2


Which means that tr( 1

n−1A
TA) = 1

n−1

∑n
i=1 ||⃗ai||2 = σ2 = the variance!

But this is also the sum of the eigenvalues of the matrix 1
n−1A

TA as we discussed last lecture.

But we also know that the singular values s1, · · · , sk in the SVD of A are the square roots of the shared
positive eigenvalues of ATA and AAT .

Definition 8.2
The proportion of total variance of the data {a1, · · · , an} in the direction of v⃗i is

s2i
s21 + s22 + · · ·+ s2k

=
λi∑n
j=1 λj

The total variance presevered by t < k singular values is

s21 + · · ·+ s2t
s21 + · · ·+ s2k

=

∑t
i=1 λi∑k
i=1 λi

8.2 Spread of Data
Let a⃗1, · · · , a⃗n be data points. The SVD is

A

[
a⃗1 a⃗2 · · · a⃗n
↓ ↓ ↓

]
=

[
u⃗1 · · · u⃗m

↓ U ↓

]
s1 Σ

. . . 0
sk

0 0


v⃗1 −→... V T

v⃗n −→


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Where

V T =

v11 v12 · · ·
v21...


Expanding the product, we find

a⃗1 = s1v11u⃗1 + s2v21u⃗2 + · · ·+ skvk1u⃗k

a⃗n = s1v1nu⃗1 + · · ·+ skvknu⃗k

Recall the singular values are non-increasing, i.e. s1 ≥ s2 ≥ · · · ≥ sk > 0.
Note that s1 is the largest, and v11 is a small positive or negative number.

Data points a⃗i are linear combinations of u⃗i’s.

u⃗1 is scaled by the largest amount by its corresponding eigenvector, and it can be scaled either positively
or negatively depending on v11.
In other words, the line formed by u has the greatest scaling factor (s1), so we can expect points a⃗1, · · · , a⃗n to
be greatly spread out relative to this line.

In the above picture, the points vary a lot more along the line formed by u⃗1 compared to the line formed by u⃗2.

What happens if s2 = 0?
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Then all of the points are on the line formed by u⃗1! The data is still relatively spread out because u⃗1 was
originally affecting the spread of the data the most.

Thus the spread is dependent on the largest singular values.

8.2.1 Image Compression

We represent an image using grayscale, where each pixel is assigned a value between 0 (black) to 1 (white).

The matrix A represents the grayscale values of the image.

The original image (handed out in class) is 194× 259 = 50246 pixels.
The SVD of A is UΣV T . We then set the small singular values equal to 0. We want a small effect on the total
variance.
We get a new image with matrix A′ = UΣ′V T .

Using only 41 singular values, we can compress the matrices as follows:

We now need to only store (41)(194) + 412 + (41)(259) = 20254 pixels. We compressed to less than half of
the original data, while still capturing over 99% of the variance in the image. This turns out to be a decent
compression.
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