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7 Singular Value Decomposition, Trace and Eigenvalues

7.1 Singular Value Decomposition
From last time, we had the following:

Theorem 7.1
Let A be m× n. Then we can write

A = UΣV T

Here, U is an orthogonal m×m matrix (rows and columns are unit vectors, and all rows and columns are
orthogonal, note that this matrix is not unique, we used gram-schmidt to find orthogonal matrices).
V is an orthogonal n× n matrix (not unique)
Σ is an m × n matrix whose upper left submatrix has positive entries that are non-increasing. For s1 ≥
s2 ≥ · · · ≥ sk ≥ 0, we have

Σ =


s1

. . . 0
sk

0 0



Note 7.2

1. The columns of V are the normalized eigenvectors of ATA

2. The singular values s1, · · · , sk are the square roots of the shared eigenvalues of ATA and AAT

3. V T = V −1, UT = U−1 (orthogonal)

4. AAT is symmetric =⇒ spectral theorem holds =⇒ all eigenvalues are real and form an orthonormal
basis of eigenvectors (very important for this class)

5. All the eigenvalues of ATA are nonnegative.

6. {Av⃗1, · · · , Av⃗n} forms an orthogonal set, where v⃗1, · · · , v⃗n is an orthonormal basis of eigenvectors.

7. AAT and ATA share the same non-zero eigenvalues.

Proof. of 5. Let v⃗ be an eigenvector with eigenvalue λ ̸= 0 for ATA.

Remember that ||v⃗||2 = v⃗ · v⃗ = v⃗T v⃗, and because ATAv⃗ = λv⃗:

||Av⃗||2 = (Av⃗)T (Av⃗)

= v⃗TATAv⃗

= v⃗T (λv⃗)

= λ(v⃗T v⃗)

= λ||v⃗||2 ≥ 0

Which implies that λ ≥ 0.
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Example 7.3

A =

[
1 0 2
0 1 0

]
We find

V =

1/√5 0 −
√
2/5

0 1 0

2/
√
5 0 1

√
5

 Σ =

[√
5 0 0
0 1 0

]
U =

[
1 0
0 1

]
Remember that we must take the transpose of V .

What are the non-zero eigenvalues of ATA? By Σ, we get that the squares of
√
5 and 1, which are 5

and 1, are the non-zero eigenvalues. The other eigenvalue of ATA should be 0.

Moreover, one can compute

ATA =

1/√5
0

2/
√
5

 = 5

1/√5
0

2/
√
5


And we find that this is a column vector for V .

I believe that the columns of V are eigenvectors, which correspond to the eigenvalues found in Σ. The first
column is an eigenvector with eigenvalue 5, second column is an eigenvector with eigenvalue 1, and third
column is an eigenvector with eigenvalue 0.

What is matrix U?
Since V T = V −1 =⇒ A = UΣV T =⇒ AV = UΣ, we have that

A

[
v⃗1 v⃗2 · · · v⃗n
↓ ↓ ↓

]
=

[
u⃗1 · · · v⃗m
↓ ↓

]
s1

. . . 0
sk

0 0


And thus [

Av⃗1 Av⃗2 · · · Av⃗n
↓ ↓ ↓

]
=

[
s1u⃗1 s2u⃗2 · · · skv⃗m · · · ???
↓ ↓ ↓

]
Thus, we solve Av⃗i = siu⃗i, 1 ≤ i ≤ k to find the vectors u⃗i (may need Gram-Schmidt to get this).

Theorem 7.4
The trace of A, denoted tr(A), is the sum of the diagonal entries of A. We have the following:

1. tr(A) = sum of the eigenvalues of A (including multiplicity)

2. det(A) = product of the eigenvalues (including multiplicity)

Example 7.5

A =

5 4 2
4 5 2
2 2 2


A has eigenvalues 1, 1, and 10.
tr(A) = 12 = sum of eigenvalues.
det(A) = 10 = product of eigenvalues.

Proof. Let PA(x) = det(A− xI) be the characteristic polynomial of A. Let λ1, · · · , λn be its eigenvalues.

Remember that we find eigenvalues by setting the characteristic polynomial equal to 0, then solving for x.
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So, the eigenvalues are the roots of PA(x).

We know that PA(x) = (λ1 − x)(λ2 − x) · · · (λn − x) = (−x)n + (λ1 + λ2 + · · ·+ λn)(−x)n−1 + · · ·

Alternatively, we can use the cofactor expansion.

det(A− xI) = det




a11 − x a12 a13 · · · a1n
a21 a22 − x a23 · · ·
a31 a32 a33 − x · · ·
...

· · · ann − x




By the expansion, what is the coefficient of (−x)n−1?
If we decide to start our cofactor expansion at a13, we get rid of row 1 and column 3, our cofactor expansion looks
something like a13(· · · ), which means that we lose two x terms, meaning there is no way a13 could contribute
to the (−x)n−1 term.

So, the only way we can get the coefficient of (−x)n−1 is by starting at an element like a11 − x, then go-
ing to a22 − x, etc.

So, it is only ever the diagonal entries that will ever contribute to the (−x)n−1 term. So, this implies that

(a11 − x)(a22 − x) · · · (ann − x) = (−x)n + (a11 + a22 + · · · )(−x)n−1

Where (a11 + a22 + · · · ) is the trace.
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