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5 Affine Combinations, Convex Combinations (Section 2.4)

5.1 Affine combinations

Last time, we had that a set is affinely dependent if 3 ¢;0; = 0, > =0.

Theorem 5.1
Let @y, , Uy € R™. The following are equivalent (they are either all true or all false):

1. The set of vectors is affinely dependent.

2. The set {ty — 0,03 — U1, -+ , Uy, — U1} is linearly dependent.

3. The homogeneous forms {1, s, , ¥y} (in R**1) form a linearly dependent set.
v T -+ Uy |0
Lol 1
1 1 110

Note that bottom row represents the equation ¢; + ¢ + - - - ¢, = 0.

Example 5.2
Is {(2,1),(5,4),(—3,—2)} affinely dependent?

Because the difference vectors are not multiples of each other, they form a linearly independent set, so by
our above theorem we have that {(2,1), (5,4),(—3,—2)} is affinely independent.

Alternatively, we could use the third property and row reduce the matrix
2 5 =3|0
1 4 =210
1 1 1 (0

Just as every vector in the span of a set of linearly independent vectors can be uniquely expressed as a linear
combination of those vectors, we have the following analogue with affinely independent sets of vectors:

Theorem 5.3

Let S = {¢, -+, U} be affinely independent in R™. Then each @ € aff(S) can be uniquely written as an
affine combination of Uy, - - - , Uy,.

The (unique) coefficients c1, - - , ¢;, such that @ = Z:’;l c;U; are the Barycentric coordinates of .

Note

Note that we are simply looking for how to write « as an affine combination of vy, -+ , Up,.

We consider coloring a triangle by using RGB values (r, g,b), where 0 < r,g,b <1 (so (0,1,0) is green).

The RGB values of the vertices of a triangle will be used to interpolate the color inside the triangle. The
contribution of each RGB value will be depending on the Barycentric coordinates of the point.

Consider we have a triangle with 3 vertices, the top vertex R having RGB values (1,0,0), the left vertex
G having values (0, 1,0), and the right vertex B having values (0,0, 1).
How much will each vertex contribute to the color of some point P within the triangle?
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The contribution of vertex R to the color of point P will be the ratio

area of triangle GPB

=c
area of entire triangle RGB !

Which sort of represents how "close" point P is to vertex R.
We can generalize this to define ¢, ¢3 similarly, and we find that ¢; + ¢ + ¢c3 = 1.

Moreover, these are the coefficients that form the affine combination of P using the 3 vertices.

Example 5.4

Given points and RGB values
Point ‘ RGB
(2,0) | (1,01, 02)
(1, 2) (0,1, 1)
(3,2) | (0.2,0.3,0.4)

Find the RGB value of the interpolated point (1.5,0.8).

We express (1.5,0.8) as an affine combination of (2,0), (1,1), (3,2) by row reducing

2 1 3]|15]
01 2108
11 1 1]
And we get ) )
1 0 0]0.3
01 0]06
0 0 1]01
Which means that the RGB value at the point (1.5, 0.8) is

0.3-(1,0.1,0.2) + 0.6 - (0,1,1) + 0.1 - (0.2,0.3,0.4) = (0.32,0.66,0.7)

5.2 Convex Combinations (Section 2.4)

Definition 5.5
A convex combination of ¥y, -+ , ¥, € R" is a linear combination Y., ¢;¥; such that > ! ¢; = 1 and
c>0,1<1<m.

The set of all convex combinations of a set .S is the convex hull, denoted conv(S).

Example 5.6
Consider S = {#, 72} (where ¥, 5 are not multiples).
Then, conv(S) contains points § = (1 — ) + 2, 0 < t < 1.

F=01—-t)0 +tth 0<t<1
7

| +t(Uy —01)  equivalent to py + 7

Which is a line segment.

The convex hull of 3 points (not on a line) exactly create a triangle (the ratios in the last section make
sense, because they are all nonnegative).
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