5 Affine Combinations, Convex Combinations (Section 2.4)

5.1 Affine combinations

Last time, we had that a set is affinely dependent if $\sum c_{i} \vec{v}_{i}=\overrightarrow{0}, \sum c_{i}=0$.

Theorem 5.1

Let $\vec{v}_{1}, \cdots, \vec{v}_{m} \in \mathbb{R}^{n}$. The following are equivalent (they are either all true or all false):

1. The set of vectors is affinely dependent.
2. The set $\left\{\vec{v}_{2}-\vec{v}_{1}, \vec{v}_{3}-\vec{v}_{1}, \cdots, \vec{v}_{m}-\vec{v}_{1}\right\}$ is linearly dependent.
3. The homogeneous forms $\left\{\tilde{v}_{1}, \tilde{v}_{2}, \cdots, \tilde{v}_{m}\right\}$ (in \mathbb{R}^{n+1}) form a linearly dependent set.

$$
\left[\begin{array}{cccc|c}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{m} & 0 \\
\downarrow & \downarrow & & \downarrow & \\
1 & 1 & & 1 & 0
\end{array}\right]
$$

Note that bottom row represents the equation $c_{1}+c_{2}+\cdots c_{m}=0$.

Example 5.2

Is $\{(2,1),(5,4),(-3,-2)\}$ affinely dependent?

$$
\begin{aligned}
& \vec{v}_{2}-\vec{v}_{1}=(3,3) \\
& \vec{v}_{3}-\vec{v}_{1}=(-5,-3)
\end{aligned}
$$

Because the difference vectors are not multiples of each other, they form a linearly independent set, so by our above theorem we have that $\{(2,1),(5,4),(-3,-2)\}$ is affinely independent.

Alternatively, we could use the third property and row reduce the matrix

$$
\left[\begin{array}{ccc|c}
2 & 5 & -3 & 0 \\
1 & 4 & -2 & 0 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

Just as every vector in the span of a set of linearly independent vectors can be uniquely expressed as a linear combination of those vectors, we have the following analogue with affinely independent sets of vectors:

Theorem 5.3

Let $S=\left\{\vec{v}_{1}, \cdots, \vec{v}_{m}\right\}$ be affinely independent in \mathbb{R}^{n}. Then each $\vec{u} \in \operatorname{aff}(S)$ can be uniquely written as an affine combination of $\vec{v}_{1}, \cdots, \vec{v}_{m}$.

The (unique) coefficients c_{1}, \cdots, c_{m} such that $\vec{u}=\sum_{i=1}^{m} c_{i} \vec{v}_{i}$ are the Barycentric coordinates of \vec{u}.

Note

Note that we are simply looking for how to write \vec{u} as an affine combination of $\vec{v}_{1}, \cdots, \vec{v}_{m}$.

We consider coloring a triangle by using RGB values (r, g, b), where $0 \leq r, g, b \leq 1$ (so ($0,1,0$) is green).
The RGB values of the vertices of a triangle will be used to interpolate the color inside the triangle. The contribution of each RGB value will be depending on the Barycentric coordinates of the point.

Consider we have a triangle with 3 vertices, the top vertex R having RGB values ($1,0,0$), the left vertex G having values $(0,1,0)$, and the right vertex B having values $(0,0,1)$.
How much will each vertex contribute to the color of some point P within the triangle?

The contribution of vertex R to the color of point P will be the ratio

$$
\frac{\text { area of triangle GPB }}{\text { area of entire triangle RGB }}=c_{1}
$$

Which sort of represents how "close" point P is to vertex R.
We can generalize this to define c_{2}, c_{3} similarly, and we find that $c_{1}+c_{2}+c_{3}=1$.
Moreover, these are the coefficients that form the affine combination of P using the 3 vertices.

Example 5.4

Given points and RGB values

Point	RGB
$(2,0)$	$(1,0.1,0.2)$
$(1,2)$	$(0,1,1)$
$(3,2)$	$(0.2,0.3,0.4)$

Find the RGB value of the interpolated point (1.5, 0.8).
We express $(1.5,0.8)$ as an affine combination of $(2,0),(1,1),(3,2)$ by row reducing

$$
\left[\begin{array}{ccc|c}
2 & 1 & 3 & 1.5 \\
0 & 1 & 2 & 0.8 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

And we get

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & 0.3 \\
0 & 1 & 0 & 0.6 \\
0 & 0 & 1 & 0.1
\end{array}\right]
$$

Which means that the RGB value at the point $(1.5,0.8)$ is

$$
0.3 \cdot(1,0.1,0.2)+0.6 \cdot(0,1,1)+0.1 \cdot(0.2,0.3,0.4)=(0.32,0.66,0.7)
$$

5.2 Convex Combinations (Section 2.4)

Definition 5.5

A convex combination of $\vec{v}_{1}, \cdots, \vec{v}_{m} \in \mathbb{R}^{n}$ is a linear combination $\sum_{i=1}^{m} c_{i} \vec{v}_{i}$ such that $\sum_{i=1}^{m} c_{i}=1$ and $c_{i} \geq 0,1 \leq i \leq m$.

The set of all convex combinations of a set S is the convex hull, denoted conv (S).

Example 5.6
Consider $S=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ (where \vec{v}_{1}, \vec{v}_{2} are not multiples).
Then, $\operatorname{conv}(S)$ contains points $\vec{y}=(1-t) \vec{v}_{1}+t \vec{v}_{2}, 0 \leq t \leq 1$.

$$
\begin{aligned}
\vec{y} & =(1-t) \vec{v}_{1}+t \vec{v}_{2} & & 0 \leq t \leq 1 \\
& =\vec{v}_{1}+t\left(\vec{v}_{2}-\vec{v}_{1}\right) & & \text { equivalent to } \vec{p}_{0}+t \vec{v}
\end{aligned}
$$

Which is a line segment.
The convex hull of 3 points (not on a line) exactly create a triangle (the ratios in the last section make sense, because they are all nonnegative).

