42 Name of Lecture

On final, no google matrix, polynomials, sets, SVD. Everything from second half will just be graph stuff. Average degree $\leq \lambda_{1} \leq \Delta(G)$ can be a useful fact on the exam, but not strictly required.

1. A consumption matrix involves electricity, coal, and steel.

With columns and rows corresponding to E, C, S.

$$
\left[\begin{array}{ccc}
0.1 & 0.5 & 0.4 \\
0.2 & 0.2 & 0.1 \\
0.3 & 0 & 0.4
\end{array}\right]
$$

(a) Describe the meaning of the value 0.5 .

You need 0.5 units of electricity to make 1 unit of coal.
(b) If the open sector demands 87 of $E, 87$ of C, and 261 of S, how much total production is needed to satisfy all demands?

$$
(I-A) \vec{x}=\vec{d}
$$

We want

$$
\vec{x}=(I-A)^{-1}\left[\begin{array}{c}
87 \\
87 \\
261
\end{array}\right]=\left[\begin{array}{l}
630 \\
360 \\
750
\end{array}\right]
$$

So, we need 630 units of $E, 360$ units of C, and 750 units of S.
One other thing to know about the input/output model:

$$
(I-A)^{-1}=\left[\begin{array}{ccc}
100 / 87 & 100 / 87 & 370 / 261 \\
\cdots & & \\
\cdots & &
\end{array}\right]
$$

The value $\frac{370}{261}$ corresponds to the fact that if the open sector demands an additional 1 unit of steel, then we would need another $\frac{370}{261}$ units of electricity.
2. Let $\{(1,1,1),(2,3,-2),(1,3,0),(4,-1,4)\}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$
(a) Find the Barycentric coordinates for $(7,-2,2)=\vec{y}$ corresponding to this set.

Recall to check if the set is affinely independent, check if $\left\{\vec{v}_{2}-\vec{v}_{1}, \vec{v}_{3}-\vec{v}_{1}, \vec{v}_{4}-\vec{v}_{1}\right\}$ is linearly independent over \mathbb{R}^{3}.

Asking for Barycentric coordinates implies that there must be a unique affine combination by definition.

Here, we must write $\vec{y}-\vec{v}_{1}$ as a linear combination of $\left\{\vec{v}_{2}-\vec{v}_{1}, \vec{v}_{3}-\vec{v}_{1}, \vec{v}_{4}-\vec{v}_{1}\right\}$.

$$
\begin{gathered}
\Longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & 3 & 6 \\
2 & 2 & -2 & -10 \\
-3 & -1 & 3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -7 \\
0 & 0 & 1 & 1
\end{array}\right] \\
\Longrightarrow 3\left(\vec{v}_{2}-\vec{v}_{1}\right)-7\left(\vec{v}_{3}-\vec{v}_{1}\right)+1\left(\vec{v}_{4}-\vec{v}_{1}\right)=\vec{y}-\vec{v}_{1} \\
\Longrightarrow 4 \vec{v}_{1}+3 \vec{v}_{2}-7 \vec{v}_{3}+\vec{v}_{4}=\vec{y}
\end{gathered}
$$

So the Barycentric coordinates are $4,3,-7,1$.
Recall that affinely dependency requires that $\sum c_{i} v_{i}=\overrightarrow{0}, \sum c_{i}=0$ (where c_{i} not all 0)
3. Let $S=\{\vec{v} \in \mathbb{R}: \vec{u} \cdot \vec{z}=5\}$ for some fixed vector $\vec{u} \neq \overrightarrow{0}$. Show that S is affine.

We must show that for any $\vec{z}_{1}, \vec{z}_{2} \in S$, $t \vec{z}_{1}+(1-t) \vec{z}_{2} \in S, t \in R$.

Let $\vec{z}_{1}, \vec{z}_{2} \in S$. Then we have

$$
\begin{gathered}
\vec{u} \cdot\left(t z_{1}+(1-t) z_{2}\right)=\vec{u} \cdot\left(t \vec{z}_{1}\right)+(1-t) \vec{u} \cdot \vec{z}_{2}=5 t+5(1-t)=5 \\
\Longrightarrow t \vec{z}_{1}+(1-t) \vec{z}_{2} \in S \Longrightarrow S \text { is affine }
\end{gathered}
$$

From problem 2, what is the affine hull of $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$?
We had $\left\{\vec{v}_{2}-\vec{v}_{1}, \vec{v}_{3}-\vec{v}_{1}, \vec{v}_{4}-\vec{v}_{1}\right\}$ is a linearly independent set in \mathbb{R}^{3}. Thus this set forms a basis, meaning any vector $\vec{y}-\vec{v}_{1}$ is a linear combination of the set of vectors. Thus any $\vec{y} \in \mathbb{R}$ can be written as an affine combination of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$.
So, the affine hull is \mathbb{R}^{3}.
4. The Sudoku graph of size n^{2} (on n^{4} vertices) is a graph whose vertices are the cells of a blank Sudoku puzzle, and two vertices are adjacent if and only if two cells are in the same row, column, or $n \times n$ block.
(a) For the 9×9 graph $(n=3)$, what is the largest eigenvalue of the adjacency matrix?

This graph is 20 -regular, so the largest eigenvalue is $\lambda=20$ with multiplicity 1 .
(b) Is the graph bipartite?

No, the graph is not bipartite. We can create an odd cycle by traveling within 3 cells in the same row, column, or 3×3 cell.

Coloring this graph requires all row, columns, and blocks to be different colors since they are all adjacent to each other.
So, the sudoku puzzle can be seen as finding a proper 9-coloring of the graph, given a partial coloring of some vertices.

