40 Graph Colorings (Section 5.6)

40.1 Graph Colorings (Section 5.6)

Definition 40.1
A proper coloring of a graph G is a labeling (coloring) of the vertices with 1 specific color so that adjacent vertices are different colors.

We say a graph is k-colorable if it can be properly colored with k colors.
The chromatic number of G, denoted $\chi(G)$, is the minimum k value so that G is k-colorable.

Example 40.2

An example of a coloring for a given graph:

Here, $\chi(G)=3$.

Definition 40.3

Let A be a real, symmetric $n \times n$ matrix. The Rayleigh Quotient is

$$
R(A, \vec{x})=\frac{\vec{x}^{T} A \vec{x}}{\vec{x}^{T} \vec{x}} \quad \vec{x} \neq \overrightarrow{0}
$$

Theorem 40.4
Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of a real, symmetric matrix. Then

$$
\lambda_{n} \leq R(A, \vec{x}) \leq \lambda_{1}
$$

For all $\vec{x} \in \mathbb{R}^{n} \backslash\{\overrightarrow{0}\}$.

Suppose now A is the adjacency matrix, and we pick $\vec{x}=(1,1, \cdots, 1)^{T}$ (G may NOT be regular).

Which is the average degree of the graph.

Thus, we have the following:
Lemma 40.5
For any graph G, the largest eigenvalue λ_{1} satisfies average degree $=R(A, \vec{x}) \leq \lambda_{1} \leq \Delta(G)$.

Definition 40.6

The induced subgraph H of G is the graph where H is a subgraph of G, and for any vertices $u, v \in V(H)$, if $u \sim v$ in G, we must have $u \sim v$ in H.

Example 40.7

Take the following graph G :

The second graph is a subgraph of G, but it is not an induced subgraph because it is missing $1 \sim 3$. The third graph is an induced subgraph.

Theorem 40.8

If H is an induced subgraph of G, and $\lambda_{k}^{\prime} \leq \cdots \lambda_{1}^{\prime}$ are the eigenvalues of $H, \lambda_{k} \leq \cdots \leq \lambda_{1}$ are the eigenvalues of G, then $\lambda_{1}^{\prime} \leq \lambda_{1}$ (largest eigenvalue is smaller)

Definition 40.9

We say G is k-critical if $\chi(G)=k$, but ANY proper subgraph H has $\chi(H)<k$.
Note that any odd cycle is 3 critical: any proper subgraph will be bipartite, so only 2 colors will be needed.

Theorem 40.10
If G is k-critical, then the minimum degree $=\delta(G) \geq k-1=\chi(G)-1$

Now we know:

1. Average degree $\leq \lambda_{1}$
2. $\lambda_{1}(H) \leq \lambda_{1}(G)$ if H is an induced subgraph of G
3. If H^{\prime} is k-critical, $\delta\left(H^{\prime}\right) \geq k-1=\chi\left(H^{\prime}\right)-1 \Longrightarrow \chi\left(H^{\prime}\right) \leq \delta\left(H^{\prime}\right)+1$.

Theorem 40.11 (Wilf)
For any graph G with largest eigenvalue λ_{1},

$$
\chi(G) \leq 1+\lambda_{1}
$$

Proof. Given G, we can "reduce" G to an induced subgraph H^{\prime} so that $\chi\left(H^{\prime}\right)=k$.
$\Longrightarrow \chi\left(H^{\prime}\right) \leq_{3} \delta\left(H^{\prime}\right)+1 \leq$ average degree $+1 \leq_{1} \lambda_{1}\left(H^{\prime}\right)+1 \leq_{2} \lambda_{1}(G)+1$.
So, $\chi(G) \leq \lambda_{1}(G)+1$.

