
Lecture 39: Exam 3 Review

39 Exam 3 Review
From last time, we had the Kneser graph, which has most negative eigenvalue µ = −

(
n−r−1
r−1

)
, and is

(
n−r
r

)
-regular.

So, the Hoffman ratio bound yields

α(G) ≤
(
n
r

)
1− (n−r

r )
−(n−r−1

r−1 )

=

(
n− 1

r − 1

)

We have proven the following:

Theorem 39.1 (Erdos-Ko-Rado)
If A1, · · · , Am ⊆ [n] such that

1. |Ai| = r, 1 ≤ i ≤ m

2. |Ai ∩Aj | ≠ 0, 1 ≤ i ̸= j ≤ m

Then
m ≤

(
n− 1

r − 1

)

1. Take the following graph:

Let A be the adjacency matrix. Find tr(A3).

This is essentially asking for the number of walks of length 3 that start and end at the same vertex.

Observe any C3 can be formed starting at any of the 3 vertices, and we can walk clockwise or coun-
terclockwise. So, each 3-cycle gets counted 3 times.
Then tr(A3) is all the walks of length 3 with start and end nodes the same, which is 6· number of distinct
triangles, which is 12.

More generally, the distinct number of triangles in any graph is tr(A3)
6 . The only way that we can

have a walk of length 3 that returns to the same node is by the existence of a 3-cycle.

2. Take the following graph:

(a) {−2.07,−1.37,−0.76, 0, 0.31, 1.06, 2.83}

(b) {−5,−0.79, (0)(2), 1.58, 1, 3.21}
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(c) {−2.73, (−1.22)(2), 0, (1.22)(2), 2.73}

(d) {−3.81, (0.6)(5), 0.81}

The graph is not bipartite (explicit odd cycle: 3 → 2 → 4 → 3), so the spectrum can not be symmetric,
so (c) is not the spectrum.

The maximum degree of the graph ∆(G) = 4 =⇒ |λ| ≤ 4, but (b) has eigenvalue −5, so (b) can
not be the spectrum.

The diameter of this graph is 3 (largest distance between any two vertices), so there must be at least 4
distinct eigenvalues, so (d) can not be the spectrum.

Thus (a) is the spectrum.

What is bp(G)? By the spectrum (a), we have that bp(G) ≥ max({# pos,# neg evalues}) = 3

We can decompose the graph into bicliques explicitly:

Thus from our explicit example, bp(G) ≤ 3. Combining, we find that bp(G) = 3.

3. Let A1, · · · , Am ⊆ [n] such that |Ai ∩Aj | is even, |Ai| is odd.
Let v⃗1, · · · , v⃗m ∈ Rn be the characteristic vectors. From the homework, we had the lemmas

(a) A is m× n, rank(A) ≤ min(m,n)

(b) rank(AB) ≤ min({rank(A), rank(B)})

Let M be the matrix whose ith row is v⃗i.

(a) dimensions of MMT ?

M is m× n, MT is n×m, so MMT is m×m.

(b) Describe the parity (even, odd) of the entries in MMT .v⃗1 →
v⃗2 →
...

[
v⃗1 v⃗2 · · ·
↓ ↓

]
=


odd EVEN

odd
. . .

EVEN odd


(c) Apply the cofactor expansion on row 1 of MMT to explain why det(MMT ) ̸= 0.

odd even even even


Any entry that is even clearly expands out to create an even number. If we expand out on the odd
number, the only contribution of an odd number comes from multiplying at the numbers on the
diagonal.
=⇒ det(MMT ) = even + even + · · ·+ odd ̸= 0
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(d) What is the rank of MMT ?
det(MMT ) ̸= 0 =⇒ invertible =⇒ rank(MMT ) = m
From here, we apply lemmas to conclude m ≤ n.

(e) Take the graph

Which has spectrum {−1.48, 0.31, 2.17, x, y}. Find x and y.

We can easily see that bp(G) = 2.
Then, we can not have more than 2 positive eigenvalues. We also can not have 3 negative eigenvalues.
We have tr(A) = 0 =⇒ x+ y = −1. We know one of the eigenvalues must be 0, so the other one
must be -1.
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