Hoffman Ratio Bound, Kneser Graph 38

Lemma 38.1 If G is d-regular, $d = \lambda_1 \ge \lambda_2, \dots \ge \lambda_n$, and $\vec{x}_s = \sum_{i=1}^n a_i \vec{v}_i$, then $a_1 = \vec{v}_1 \cdot \vec{x}_s = \frac{|S|}{\sqrt{n}}$.

Proof.

$$\vec{v}_1 \cdot \vec{x}_S = \vec{v}_1 \cdot \left(\sum_{i=1}^n a_i \vec{v}_i\right) = a_1(\vec{v}_1 \cdot \vec{v}_1) = a_1(1) = a_1$$

Moreover for $\lambda_1 = d$, we know it corresponds to eigenvector $(1, 1, \dots, 1)^T$. Normalized, we get that $\vec{v}_1 = \frac{1}{\sqrt{n}} (1, 1, \dots, 1)^T$. So,

$$a_1 = \vec{v}_1 \cdot \vec{x}_S = \frac{1}{\sqrt{n}} \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix} \cdot \vec{x}_S = \frac{1}{\sqrt{n}} |S|$$

Lemma 38.2

Let \vec{x}_S be the characteristic vector as before. Then

$$\vec{x}_S^T A \vec{x}_S = 0$$

Example 38.3

Take the following graph and independent set:

		0	1	1	0	0	0	[1]		y_1
		1	0	1	0	1	1	0		y_2
	1 -	1	1	0	1	0	0	0	_	y_3
\Longrightarrow	$Ax_S =$	0	0	1	0	1	0	1	=	y_4
		0	1	0	1	0	1	0		y_5
		0	1	0	0	1	0	1		y_6
		Lo	Т	U	U	1	ΟJ	Γī		y_6

Here, note that row 2, or y_2 , is the number of vertices in the independent set that vertex 2 is adjacent to.

Proof.

$$\vec{x}_S^T A \vec{x}_S = \vec{x}_T \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = 0$$

If $x_i = 1$, then i is in the independent set. Then $y_i = 0$ since i can't be adjacent to anything in S. Then, $x_i y_i = 0.$

1	-	-	-	-

Theorem 38.4 (Hoffman ratio bound)

If G is a connected d-regular graph with eigenvalues $d = \lambda_1 \ge \cdots \ge \lambda_n$, then

$$\alpha(G) \le \frac{n}{1 - \frac{d}{\lambda_n}}$$

Example 38.5

Take the petersen graph, which has eigenvalues $\{3, (1)^{(5)}, (-2)^{(4)}\}$. By the Hoffman bound,

$$\alpha(G) \leq \frac{10}{1 - \frac{3}{-2}} = 4$$

Equality can be obtained by construction.

Proof. Let $\vec{v}_1, \dots, \vec{v}_n$ be an orthonormal basis of eigenvectors, and let $\vec{x}_S = \sum_{i=1}^n a_i \vec{v}_i$. By lemma 3,

$$0 = \vec{x}_{S} \cdot (A\vec{x}_{S})$$

$$= \left(\sum_{i=1}^{n} a_{i}\vec{v}_{i}\right) \cdot \left(\sum_{i=1}^{n} a_{i}A\vec{v}_{i}\right)$$

$$= \left(\sum_{i=1}^{n} a_{i}\vec{v}_{i}\right) \cdot \left(\sum_{i=1}^{n} a_{i}\lambda_{i}\vec{v}_{i}\right)$$

$$= \sum_{i=1}^{n} \lambda_{i}a_{i}^{2}$$

$$= a_{1}^{2}\lambda_{1} + \sum_{i=2}^{n} \lambda_{i}a_{i}^{2}$$

$$= \left(\frac{|S|}{\sqrt{n}}\right)^{2}(d) + \sum_{i=2}^{n} \lambda_{i}a_{i}^{2} \qquad \text{by lemma } 2$$

$$\geq \frac{d}{n}|S|^{2} + \sum_{i=2}^{n} \lambda_{n}a_{i}^{2}$$

$$= \frac{d}{n}|S|^{2} + \lambda_{n}(|S| - a_{1}^{2}) \qquad \text{by lemma } 1$$

$$= \frac{d}{n}|S|^{2} + \lambda_{n}(|S| - a_{1}^{2}) \qquad \text{by lemma } 2$$

$$\implies 0 \geq \frac{d}{n}|S|^{2} + \lambda_{n}|S| - \lambda_{n}\frac{|S|^{2}}{n}$$

$$\implies \frac{\lambda_{n}}{n}|S| \geq \frac{d}{n}|S| + \lambda_{n}$$

$$|S|\left(\frac{\lambda_{n}}{n} - \frac{d}{n}\right) \geq \lambda_{n}$$

$$|S|(\lambda_{n} - d) \geq n\lambda_{n}$$

$$|S| \leq \frac{n\lambda_{n}}{\lambda_{n} - d} = \frac{n}{1 - \frac{d}{\lambda_{n}}}$$

Because $\lambda_n - d$ is negative.

Definition 38.6

The kneser graph K(n,r) is a graph whose vertices are the subsets of size r of $[n] = \{1, 2, \dots, n\}$, with two vertices (sets) adjacent i f and only if the orresponding sets have no elements in common.

Example 38.7

In general, K(n,r) is on $\binom{n}{r}$ vertices, and is $\binom{n-r}{r}$ -regular.

Theorem 38.8 Th

the distinct eigenvalues of
$$K(n,r)$$
 are

$$\mu_i = (-1)^i \binom{n-r-i}{r-i}$$

This means that the most negative eigenvalue of K(n,r) is

$$-\binom{n-r-1}{r-1}$$

i.e. the eigenvalue that occurs when i = 1.