38 Hoffman Ratio Bound, Kneser Graph

Lemma 38.1
If G is d-regular, $d=\lambda_{1} \geq \lambda_{2}, \cdots \geq \lambda_{n}$, and $\vec{x}_{s}=\sum_{i=1}^{n} a_{i} \vec{v}_{i}$, then $a_{1}=\vec{v}_{1} \cdot \vec{x}_{s}=\frac{|S|}{\sqrt{n}}$.

Proof.

$$
\vec{v}_{1} \cdot \vec{x}_{S}=\vec{v}_{1} \cdot\left(\sum_{i=1}^{n} a_{i} \vec{v}_{i}\right)=a_{1}\left(\vec{v}_{1} \cdot \vec{v}_{1}\right)=a_{1}(1)=a_{1}
$$

Morover for $\lambda_{1}=d$, we know it corresponds to eigenvector $(1,1, \cdots, 1)^{T}$.
Normalized, we get that $\vec{v}_{1}=\frac{1}{\sqrt{n}}(1,1, \cdots, 1)^{T}$. So,

$$
a_{1}=\vec{v}_{1} \cdot \vec{x}_{S}=\frac{1}{\sqrt{n}}\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] \cdot \vec{x}_{S}=\frac{1}{\sqrt{n}}|S|
$$

Lemma 38.2
Let \vec{x}_{S} be the characteristic vector as before.
Then

$$
\vec{x}_{S}^{T} A \vec{x}_{S}=0
$$

Example 38.3

Take the following graph and independent set:

$$
\Longrightarrow A \vec{x}_{S}=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6}
\end{array}\right]
$$

Here, note that row 2 , or y_{2}, is the number of vertices in the independent set that vertex 2 is adjacent to.
Proof.

$$
\vec{x}_{S}^{T} A \vec{x}_{S}=\vec{x}_{T}\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=0
$$

If $x_{i}=1$, then i is in the independent set. Then $y_{i}=0$ since i cant be adjacent to anything in S. Then, $x_{i} y_{i}=0$.
Else if $x_{i}=0$, then $x_{i} y_{i}=0$.

Theorem 38.4 (Hoffman ratio bound)
If G is a connected d-regular graph with eigenvalues $d=\lambda_{1} \geq \cdots \geq \lambda_{n}$, then

$$
\alpha(G) \leq \frac{n}{1-\frac{d}{\lambda_{n}}}
$$

Example 38.5

Take the petersen graph, which has eigenvalues $\left\{3,(1)^{(5)},(-2)^{(4)}\right\}$.
By the Hoffman bound,

$$
\alpha(G) \leq \frac{10}{1-\frac{3}{-2}}=4
$$

Equality can be obtained by construction.

Proof. Let $\vec{v}_{1}, \cdots, \vec{v}_{n}$ be an orthonormal basis of eigenvectors, and let $\vec{x}_{S}=\sum_{i=1}^{n} a_{i} \vec{v}_{i}$. By lemma 3,

$$
\begin{aligned}
& 0= \vec{x}_{S} \cdot\left(A \vec{x}_{S}\right) \\
&=\left(\sum_{i=1}^{n} a_{i} \vec{v}_{i}\right) \cdot\left(\sum_{i=1}^{n} a_{i} A \vec{v}_{i}\right) \\
&=\left(\sum_{i=1}^{n} a_{i} \vec{v}_{i}\right) \cdot\left(\sum_{i=1}^{n} a_{i} \lambda_{i} \vec{v}_{i}\right) \\
&=\sum_{i=1}^{n} \lambda_{i} a_{i}^{2} \\
&=a_{1}^{2} \lambda_{1}+\sum_{i=2}^{n} \lambda_{i} a_{i}^{2} \\
&=\left(\frac{|S|}{\sqrt{n}}\right)^{2}(d)+\sum_{i=2}^{n} \lambda_{i} a_{i}^{2} \quad \text { by lemma } 2 \\
& \geq \frac{d}{n}|S|^{2}+\sum_{i=2}^{n} \lambda_{n} a_{i}^{2} \\
&=\frac{d}{n}|S|^{2}+\lambda_{n}\left(|S|-a_{1}^{2}\right) \quad \text { by lemma } 1 \\
&=\frac{d}{n}|S|^{2}+\lambda_{n}\left(|S|-\frac{|S|^{2}}{n}\right) \quad \text { by lemma } 2 \\
& \Longrightarrow 0 \geq \frac{d}{n}|S|^{2}+\lambda_{n}|S|-\lambda_{n} \frac{|S|^{2}}{n} \\
& \Longrightarrow \frac{\lambda_{n}}{n}|S| \geq \frac{d}{n}|S|+\lambda_{n} \\
&|S|\left(\frac{\lambda_{n}}{n}-\frac{d}{n}\right) \geq \lambda_{n} \\
&|S|\left(\lambda_{n}-d\right) \geq n \lambda_{n} \\
&|S| \leq \frac{n \lambda_{n}}{\lambda_{n}-d}=\frac{n}{1-\frac{d}{\lambda_{n}}} \\
&
\end{aligned}
$$

Because $\lambda_{n}-d$ is negative.

Definition 38.6
The kneser graph $K(n, r)$ is a graph whose vertices are the subsets of size r of $[n]=\{1,2, \cdots, n\}$, with two vertices (sets) adjacent if and only if the orresponding sets have no elements in common.

Example 38.7

$K(5,2)$ looks like the following:

$K(5,2)$ is the Petersen graph.

In general, $K(n, r)$ is on $\binom{n}{r}$ vertices, and is $\binom{n-r}{r}$-regular.

Theorem 38.8
The distinct eigenvalues of $K(n, r)$ are

$$
\mu_{i}=(-1)^{i}\binom{n-r-i}{r-i}
$$

This means that the most negative eigenvalue of $K(n, r)$ is

$$
-\binom{n-r-1}{r-1}
$$

i.e. the eigenvalue that occurs when $i=1$.

