37 Biclique Decomposition, Independence (Section 5.5)

Proof. (Continued) Assume m bicliques decompose G. Show $\operatorname{Eig}_{+}(A) \cap U^{\perp}=\{\overrightarrow{0}\}$.
Let $\lambda_{1}, \cdots, \lambda_{k}$ be the positive eigenvalues.
For any $\vec{y} \neq \overrightarrow{0}$ in $\operatorname{Eig}_{+}(A)$, write

$$
\begin{aligned}
\vec{y} & =\sum_{i=1}^{k} c_{i} \vec{w}_{i} \Longrightarrow A \vec{y}=\sum_{i=1}^{k} c_{i} A\left(\vec{w}_{i}\right)=\sum_{i=1}^{k} c_{i} \lambda_{i} \vec{w}_{i} \\
& \Longrightarrow \vec{y}^{T} A \vec{y}=\vec{y} \cdot(A \vec{y})=\sum_{i=1}^{k} c_{i} \vec{w}_{i} \cdot\left(\sum_{i=1}^{k} c_{i} \lambda_{i} \vec{w}_{i}\right)
\end{aligned}
$$

Recall that we have an orthonormal basis of eigenvectors, so $\vec{w}_{i} \cdot \vec{w}_{j}=0$ when $i \neq j$, and $\vec{w}_{i} \cdot \vec{w}_{i}=\left\|\vec{w}_{i}\right\|^{2}=1$. So,

$$
\sum_{i=1}^{k} c_{i} \vec{w}_{i} \cdot\left(\sum_{i=1}^{k} c_{i} \lambda_{i} \vec{w}_{i}\right)=\sum_{j=1}^{k} c_{i}^{2} \lambda_{i} \cdot(1)>0
$$

Because λ_{i} 's are positive.
It suffices to show that for any $\vec{z} \neq \overrightarrow{0}$ in $U^{\perp}, \vec{z}^{T} A \vec{z}=0$, which would mean we cannot share a nonzero vector with $\operatorname{Eig}_{+}(A)$.

Recall that $U^{\perp}=\left\{\vec{x} \in \mathbb{R}^{n}: \vec{x}^{T} \vec{u}_{i}=\vec{x} \cdot \vec{u}_{i}=0\right.$ for all $\left.1 \leq i \leq m\right\}$
Now for $\vec{z} \in U^{\perp}$,

$$
\begin{aligned}
& \vec{z}^{T} A \vec{z}=\vec{z}^{T}\left(\sum_{i=1}^{m} A\left(B\left(X_{i}, Y_{i}\right)\right)\right) \vec{z} \\
&=\vec{z}^{T}\left(\sum_{i=1}^{m}\left(\vec{u}_{i} \vec{v}_{i}^{T}+\vec{v}_{i} \vec{u}_{i}^{T}\right)\right) \vec{z} \\
&=\sum_{i=1}^{m}\left(\vec{z}^{T} \vec{u}_{i} \vec{v}_{i} \vec{z}+\vec{z}^{T} \vec{v}_{i} \vec{u}_{i}^{T} \vec{z}\right) \\
&=\sum_{i=1}^{m}\left(0 \cdot \vec{v}_{i} \vec{z}+\vec{z}^{T} \vec{v}_{i} \cdot 0\right) \\
&=0 \\
& \Longrightarrow \operatorname{Eig}_{+}(A) \cap U^{\perp}=\{\overrightarrow{0}\} \Longrightarrow \operatorname{Eig}_{+}(A) \subseteq U \Longrightarrow \operatorname{dim}^{\prime}\left(\operatorname{Eig}_{+}(A)\right)+\operatorname{dim}\left(U^{\perp}\right) \leq n \\
& \Longrightarrow \operatorname{dim}\left(\operatorname{Eig}_{+}(A)\right)+\operatorname{dim}\left(U^{\perp}\right)-m \leq n-m \leq \operatorname{dim}\left(U^{\perp}\right) \\
& \Longrightarrow \# \text { of } \operatorname{bicliques}=m \geq \operatorname{dim}\left(\operatorname{Eig}_{+}(A)\right)
\end{aligned}
$$

Example 37.1

Take the following graph:

And the following spectrum candidates:

- $\left\{-3.1,(-2.44)^{(2)}, 0,(2.44)^{2}, 3.1\right\}$
- $\left\{-2.77,-0.1,(0.2)^{(3)}, 1.03,1.24\right\}$
- $\{-2.42,-1.37,-0.6,-0.38,0.76,1.27,2.74\}$

Which is the spectrum?

We can perform the following biclique decomposition:

Note that this gives us an upper bound on $\mathrm{bp}(G)$, the minimum number of bicliques that a graph can be decomposed into. $\operatorname{So}, \operatorname{bp}(G) \leq 4$, so the spectrum can not be 2 because the theorem states that

$$
\operatorname{bp}(G) \geq \max (\{\# \text { pos, } \# \text { neg eigen values }) \geq \max (\{2,5\})=5
$$

Also, it cannot be the first spectrum since G is not bipartite because $5 \rightarrow 6 \rightarrow 7 \rightarrow 5$ is an odd cycle. So, the spectrum must be the third option.

Moreover, by the spectrum, $\operatorname{bp}(G) \geq \max (\{3,4\})=4$, so combining this with the above construction, $\operatorname{bp}(G)=4$.

37.1 Independence (Section 5.5)

Definition 37.2

A subset S of vertices of a graph G is an independent set if for any $u, v \in S, u$ is not adjacent to v.
The independence number of G, denoted $\alpha(G)$, is the size of the largest independent set.

Example 37.3

In the following graph, the circled vertices make up a maximum independent set.

The following vertices make up a maximal independent set, a set of vertices to which we can not any more if we wish to maintain the property of being an independent set.

Definition 37.4

Let \vec{x}_{S} denote the characteristic vector of an independent set:

$$
\left(\vec{x}_{S}\right)_{i}= \begin{cases}1 & i \in S \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 37.5

For any independent set S,

$$
|S|=\sum_{i=1}^{n} a_{i}^{2}
$$

where

$$
\vec{x}_{S}=\sum_{i=1}^{n} a_{i} \vec{v}_{i}
$$

where $\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ is an orthonormal basis of eigenvectors of $A(G)$.

Proof.

$$
|S|=\vec{x}_{S} \cdot \vec{x}_{S}=\left(\sum_{i=1}^{n} a_{i} \vec{v}_{i}\right) \cdot\left(\sum_{i=1}^{n} a_{i} \vec{v}_{i}\right)=\sum_{i=1}^{n} a_{i}^{2}\left(\vec{v}_{i} \cdot \vec{v}_{i}\right)+\sum_{i \neq j} a_{i} a_{j}\left(\vec{v}_{i} \cdot \vec{v}_{j}\right)=\sum_{i=1}^{n} a_{i}^{2}
$$

Lemma 37.6
If G is d-regular, $\lambda_{1}=d$, then if $\vec{x}_{S}=\sum a_{i} \vec{v}_{i}$, then $a_{1}=\vec{v}_{1} \cdot \vec{x}_{S}=\frac{|S|}{\sqrt{n}}$.

Theorem 37.7 (Hoffman Ratio Bound)
If G is a connected d-regular graph with eigenvalues $d=\lambda_{1}>\lambda_{2} \geq \lambda_{3} \geq \cdots \geq \lambda_{n}$, then

$$
\alpha(G) \leq \frac{n}{1-\frac{d}{\lambda_{n}}}
$$

Where λ_{n} is the most negative eigenvalue.

