36 Biclique Decomposition

From last time, we had a **biclique**, or complete bipartite graph $K_{a,b}$. We decomposes the edges of a graph G into bicliques.

Because $K_{1,1}$ is just a single edge, it is always possible to decompose the edges of a graph into bicliques. We wish to find the minimum number of these bicliques.

An example yields an upper bound, but how does one find a lower bound?

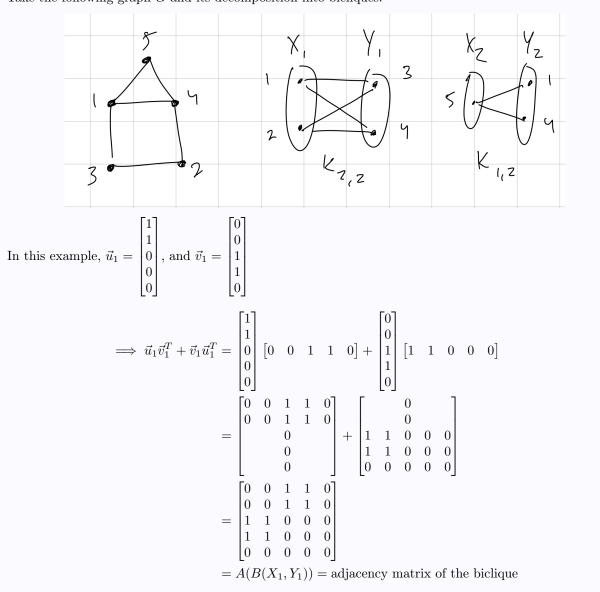
Definition 36.1

Let G be bipartite on n vertices with partite sets X and Y.

The characteristic vector of X is an n-dimensional column vector whose ith entry is 1 if $i \in X$, and 0 otherwise.

We denote this vector by \vec{u} . For Y, denote by v.

Take the following graph G and its decomposition into bicliques:



Lemma 36.3

If $B(X_i, Y_i)$ is a biclique with characteristic vectors \vec{u}_i and \vec{v}_i , then the adjacency matrix is

 $A(B(X_i, Y_i)) = \vec{u}_i \vec{v}_i^T + \vec{v}_i \vec{u}_i^T$

Note 36.4 In \mathbb{R}^n , dim(U) + dim $(U^{\perp}) = n$.

Theorem 36.5 (Witsenhausen)

Let bp(G) denote the biclique number, the fewest (minimum) bicliques needed to decompose the edges of G.

Let $\operatorname{Eig}_+(A)$ denote the space spanned by the eigenvectors with (strictly) positive eigenvalues. Let $\operatorname{Eig}_-(A)$ be defined similarly.

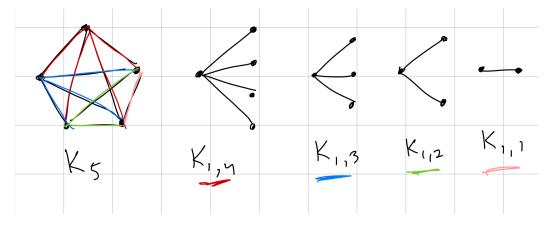
Then, by the spectral theorem,

$$\begin{split} & \operatorname{bp}(G) \geq \max(\{\operatorname{dim}(\operatorname{Eig}_+(A)), \operatorname{dim}(\operatorname{Eig}_-(A))\}) \\ & = \max(\{\operatorname{number of positive eigenvalues, number of negative eigenvalues}\}) \end{split}$$

Example 36.6

What is $bp(K_n)$, where K_n is the complete graph with *n* vertices?

Note for K_5 , we can decompose the edges into 4 bicliques with the following construction:



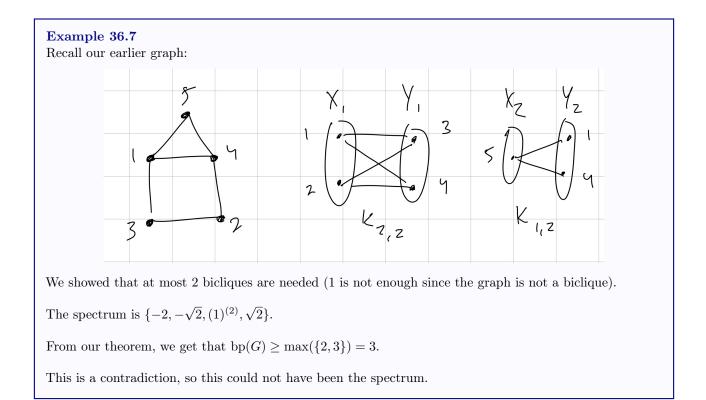
So we can see that $bp(K_5) \leq 4$.

This example construction shows we need at most n-1 bicliques, i.e., $bp(k_n) \le n-1$.

Recall the spectrum of K_n is $\{n-1, (-1)^{(n-1)}\}$.

From the theorem above, we stated that $bp(G) \ge max(\{\# \text{ positive}, \# \text{ negative eigenvalues}\}) = max(\{1, n-1\}).$ So, $bp(K_n) \ge n-1$.

Combining with our earlier result for the upper bound, we have that $bp(K_n) = n - 1$.



Proof. Let bp(G) = m. We must show that $m \ge max(\{\dim(Eig_+(A)), \dim(Eig_-(A))\})$.

We show it for $\operatorname{Eig}_+(A)$. By the spectral theorem, let $\{\vec{w}_1, \cdots, \vec{w}_k\}$ be an orthonormal basis of eigenvectors for $\operatorname{Eig}_+(A)$. (We want to show $m \ge k = \dim(\operatorname{Eig}_+(A))$)

Let $U = \operatorname{span}(\{\vec{u}_1, \cdots, \vec{u}_m\}) = \operatorname{span}$ of characteristic vectors of the X_i 's. We don't know if these characteristic vectors are linearly independent, so $\dim(U) \leq m$. Since $\dim(U) + \dim(U^{\perp}) = n$, $\dim(U_{\perp}) \geq n - m$.

Our main goal is to show $\operatorname{Eig}_+(A) \cap U^{\perp} = \{\vec{0}\}$. If we show this, then $\operatorname{Eig}_+(A) \subseteq U$, so $\dim(\operatorname{Eig}_+(A)) + \dim(U^{\perp}) \leq n$.

$$\implies \dim(\operatorname{Eig}_{+}(A)) + \dim(U^{\perp}) - m \le n - m \le \dim(U^{\perp})$$
$$\implies \dim(\operatorname{Eig}_{+}(A)) - m \le 0$$
$$\implies \# \text{ of bicliques} = m \ge \dim(\operatorname{Eig}_{+}(A))$$

as claimed. We will continue this next time.