36 Biclique Decomposition

From last time, we had a biclique, or complete bipartite graph $K_{a, b}$. We decomposes the edges of a graph G into bicliques.

Because $K_{1,1}$ is just a single edge, it is always possible to decompose the edges of a graph into bicliques. We wish to find the minimum number of these bicliques.

An example yields an upper bound, but how does one find a lower bound?
Definition 36.1
Let G be bipartite on n vertices with partite sets X and Y.
The characteristic vector of X is an n-dimensional column vector whose i th entry is 1 if $i \in X$, and 0 otherwise.

We denote this vector by \vec{u}. For Y, denote by v.

Example 36.2

Take the following graph G and its decomposition into bicliques:

In this example, $\vec{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]$, and $\vec{v}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]$
$\Longrightarrow \vec{u}_{1} \vec{v}_{1}^{T}+\vec{v}_{1} \vec{u}_{1}^{T}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{lllll}0 & 0 & 1 & 1 & 0\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}\right]$
$=\left[\begin{array}{lllll}0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ & & 0 & & \\ & & 0 & & \\ & & 0 & & \end{array}\right]+\left[\begin{array}{lllll} & & 0 & & \\ & & 0 & & \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$=\left[\begin{array}{lllll}0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$=A\left(B\left(X_{1}, Y_{1}\right)\right)=$ adjacency matrix of the biclique

Lemma 36.3
If $B\left(X_{i}, Y_{i}\right)$ is a biclique with characteristic vectors \vec{u}_{i} and \vec{v}_{i}, then the adjacency matrix is

$$
A\left(B\left(X_{i}, Y_{i}\right)\right)=\vec{u}_{i} \vec{v}_{i}^{T}+\vec{v}_{i} \vec{u}_{i}^{T}
$$

Note 36.4
In $\mathbb{R}^{n}, \operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=n$.

Theorem 36.5 (Witsenhausen)
Let $\operatorname{bp}(G)$ denote the biclique number, the fewest (minimum) bicliques needed to decompose the edges of G.

Let $\operatorname{Eig}_{+}(A)$ denote the space spanned by the eigenvectors with (strictly) positive eigenvalues. Let $\operatorname{Eig}{ }_{-}(A)$ be defined similarly.

Then, by the spectral theorem,

$$
\begin{aligned}
\mathrm{bp}(G) & \geq \max \left(\left\{\operatorname{dim}\left(\operatorname{Eig}_{+}(A)\right), \operatorname{dim}_{\left.\left.\left(\operatorname{Eig}_{-}(A)\right)\right\}\right)}\right.\right. \\
& =\max (\{\text { number of positive eigenvalues, number of negative eigenvalues }\})
\end{aligned}
$$

Example 36.6

What is $\operatorname{bp}\left(K_{n}\right)$, where K_{n} is the complete graph with n vertices?

Note for K_{5}, we can decompose the edges into 4 bicliques with the following construction:

So we can see that $\mathrm{bp}\left(K_{5}\right) \leq 4$.
This example construction shows we need at most $n-1$ bicliques, i.e., $\operatorname{bp}\left(k_{n}\right) \leq n-1$.
Recall the spectrum of K_{n} is $\left\{n-1,(-1)^{(n-1)}\right\}$.
From the theorem above, we stated that $\mathrm{bp}(G) \geq \max (\{\#$ positive, $\#$ negative eigenvalues $\})=\max (\{1, n-1\})$. So, $\operatorname{bp}\left(K_{n}\right) \geq n-1$.

Combining with our earlier result for the upper bound, we have that $\operatorname{bp}\left(K_{n}\right)=n-1$.

Example 36.7

Recall our earlier graph:

We showed that at most 2 bicliques are needed (1 is not enough since the graph is not a biclique).
The spectrum is $\left\{-2,-\sqrt{2},(1)^{(2)}, \sqrt{2}\right\}$.
From our theorem, we get that $\mathrm{bp}(G) \geq \max (\{2,3\})=3$.
This is a contradiction, so this could not have been the spectrum.

Proof. Let $\operatorname{bp}(G)=m$. We must show that $m \geq \max \left(\left\{\operatorname{dim}_{\left(\operatorname{Eig}_{+}(A)\right), \operatorname{dim}(\operatorname{Eig}-(A))}^{\operatorname{din})}\right.\right.$.
We show it for $\operatorname{Eig}_{+}(A)$.
By the spectral theorem, let $\left\{\vec{w}_{1}, \cdots, \vec{w}_{k}\right\}$ be an orthonormal basis of eigenvectors for $\operatorname{Eig}_{+}(A)$. (We want to show $\left.m \geq k=\operatorname{dim}\left(\operatorname{Eig}_{+}(A)\right)\right)$

Let $U=\operatorname{span}\left(\left\{\vec{u}_{1}, \cdots, \vec{u}_{m}\right\}\right)=$ span of characteristic vectors of the X_{i} 's.
We don't know if these characteristic vectors are linearly independent, so $\operatorname{dim}(U) \leq m$.
Since $\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=n, \operatorname{dim}\left(U_{\perp}\right) \geq n-m$.
Our main goal is to show $\operatorname{Eig}_{+}(A) \cap U^{\perp}=\{\overrightarrow{0}\}$. If we show this, then $\operatorname{Eig}_{+}(A) \subseteq U$, so $\operatorname{dim}\left(\operatorname{Eig}_{+}(A)\right)+\operatorname{dim}\left(U^{\perp}\right) \leq$ n.

$$
\begin{gathered}
\Longrightarrow \operatorname{dim}\left(\operatorname{Eig}_{+}(A)\right)+\operatorname{dim}\left(U^{\perp}\right)-m \leq n-m \leq \operatorname{dim}\left(U^{\perp}\right) \\
\Longrightarrow \operatorname{dim}\left(\operatorname{Eig}_{+}(A)\right)-m \leq 0 \\
\Longrightarrow \# \text { of bicliques }=m \geq \operatorname{dim}\left(\operatorname{Eig}_{+}(A)\right)
\end{gathered}
$$

as claimed. We will continue this next time.

