35 Bipartite Graphs (Section 5.4)

35.1 Bipartite Graphs (Section 5.4)

Definition 35.1

Graph G is bipartite if the vertex set can be partitioned into 2 disjoint subsets (partite sets) such taht every edge has one end point in each of the partite sets.

We can think of adjacent nodes as "alternating" between two sets A and B, and notice that if we have an odd cycle, then there is no way our graph can be bipartite. We can state this formally:

Theorem 35.2

Graph G is bipartite if and only if there are no odd cycles.

Theorem 35.3

Graph G is bipartite if and only if the spectrum is symmetric about 0 , i.e, if λ is an eigenvalue, then $-\lambda$ is also an eigenvalue (including multiplicity).

Example 35.4

Take the following graph:

And the following candidates for the spectrum:

1. $\{-3.1,-1,0,2,2.1\}$
2. $\{-2,-1.2,0,0.7,2.5\}$
3. $\{-2.4,-1.7,0,1.7,2.4\}$
4. $\left\{(-2.7)^{(2)}, 1,(2.2)^{(2)}\right\}$

Which one is the spectrum?

We know that (3) can not be the spectrum: the graph is bipartite (because there is an odd length cycle), so the spectrum must not be symmetric.

Recall that the eigenvalues of a graph are bounded by the highest degree $\Delta(G)=3$ up to absolute value. So, (1) can not be the spectrum because it has the eigenvalue -3.1 .

The diameter of the graph, the largest distance between any two nodes, is 3 . So there must be at least 4 distinct eigenvalues in the graph, so the spectrum can not be (4).

So, the spectrum must be (2).
Proof. (\Longrightarrow) Show that G being bipartite implies that λ and $-\lambda$ are eigenvalues.
Since G is bipartite, reorder the vertices so that the adjacency matrix is (with the left and upper sides corre-
sponding to a partite set A, and the right and lower sides corresponding to partite set B):

$$
A(G)=\left[\begin{array}{cc}
0 & C \\
C^{T} & 0
\end{array}\right]
$$

Note that this is because nodes within the same partite set will not have any edges to each other, and an adjacency matrix is symmetric, which is why C and C^{T} are there.

Suppose λ is an eigenvalue of $A(G)$ with eigenvector $\vec{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$, where x and y are vectors of appropriate lengths.
For example, if partite sets A and B have sizes 2 and 3 respectively, and if $\vec{v}=(1,2,3,4,5)^{T}$, then $x=(1,2)^{T}$ and $y=(3,4,5)^{T}$. Think of this as \vec{v} being partitioned according to where the matrix is divided horizontally.

First, observe

$$
A(G) \vec{v}=\lambda \vec{v} \Longrightarrow\left[\begin{array}{cc}
0 & C \\
C^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\lambda\left[\begin{array}{l}
x \\
y
\end{array}\right] \Longrightarrow\left[\begin{array}{c}
C y \\
C^{T} x
\end{array}\right]=\left[\begin{array}{c}
\lambda x \\
\lambda y
\end{array}\right] \Longrightarrow C y=\lambda x, C^{T} x=\lambda y
$$

Let $\vec{v}_{2}=\left[\begin{array}{c}x \\ -y\end{array}\right]$. Then,

$$
A(G) \vec{v}_{2}=\left[\begin{array}{cc}
0 & C \\
C^{T} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
-y
\end{array}\right]=\left[\begin{array}{c}
-C y \\
C^{T} x
\end{array}\right]=\left[\begin{array}{c}
-\lambda x \\
\lambda y
\end{array}\right]=-\lambda\left[\begin{array}{c}
x \\
-y
\end{array}\right] \Longrightarrow A(G) \vec{v}_{2}=-\lambda \vec{v}_{2}
$$

So, $-\lambda$ is also an eigenvalue!
(\Longleftarrow) Given that the spectrum is symmetric, we will show the graph is bipartite.
Le $\lambda_{1}, \cdots, \lambda_{n}$ be the eigenvalues (not necessarily distinct) with eigenvectors $\vec{v}_{1}, \cdots, \vec{v}_{n}$. Note that

$$
A \vec{v}_{i}=\lambda_{i} \vec{v}_{i} \Longrightarrow A^{2} \vec{v}_{i}=A\left(A \vec{v}_{i}\right)=\lambda_{i}^{2} \vec{v}_{i}
$$

So in general, $A^{k} \vec{v}_{i}=\lambda_{i}^{k} \vec{v}_{i}$.
Now for k odd,

$$
\operatorname{tr}\left(A^{k}\right)=\text { sum of eigenvalues of } A^{k}=\sum_{i=1}^{n} \lambda_{i}^{k}=0
$$

This is because the eigenvalues are symmetric about 0 , so for odd powers, everything cancels.
Recall that trace is the sum of the diagonal entries, and A^{k} represents the number of walks of length k (odd). Then, the values in the diagonal must all be 0 , which means there is no way to get back to a node in an odd number of steps, meaning there are no odd cycles, meaning the graph is bipartite.

Stronger result: Let G be connected. Then if $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{n}$ are the eigenvalues, G is bipartite if and only if $\lambda_{n}=-\lambda_{1}$.

Definition 35.5

A complete bipartite graph, or biclique, denoted $K_{a, b}$, is a bipartite graph with partite sets A and B, $|A|=a,|B|=b$, such that every vertex in A is adjacent to every vertex in B.

We will look into decomposing the edges of G using bicliques.

