34 Friendship

From last time: if G is d-regular, girth 5 , diameter 2 , then $d=2,3,7$, and maybe 57 . These conditions are necessary, but do the graphs exist? Remember that the graphs must have $d^{2}+1$ vertices.
$d=2: C_{5}$
$d=3$: Petersen Graph
$d=7$: Hoffman-Singleton graph
$d=57$: unknown

Definition 34.1

A graph G that is strongly regular, denoted $\operatorname{SRG}(n, d, a, c)$, has n vertices and is d-regular such that

1. For any 2 adjacent vertices, they have a common neighbors.
2. For any 2 non-adjacent vertices, they have c common neighbors.

From earlier, a graph with girth 5 , diameter 2 , must have $a=0$, because 2 adjacent vertices can never share a neighbor since the smallest cycle is 5 .
If two non adjacent vertices share two common neighbors, then we have a 4 -cycle, which can also not happen.
So we must have $c=1$.
So, we have classified all n and d for $\operatorname{SRG}(n, d, 0,1)$.
Theorem 34.2 (Friendship)
At a party, suppose any 2 people have exactly 1 common friend.
Then the party contains a politician who is friends with everyone.
i.e. If G is a connected (finite) graph such that every 2 distinct vertices have 1 common neighbor, then there exists a vertex adjacent to all the others.

The friendship graph F_{n} on $2 n+1$ vertices: for F_{4}, this is a windmill graph.

Proof. Suppose the conclusion is false (no vertex is adjacent to all). With the "counterexample" graph, we show it must at least be a regular graph.

We then get a contradiction.
Let u NOT be adjacent to v, with $\operatorname{deg}(u) \geq \operatorname{deg}(v)$. Our goal is to show that $\operatorname{deg}(u) \leq \operatorname{deg}(v)$.
We then repeat this on all vertices so that they all have the same degree, which will make our graph regular.
Let $\operatorname{deg}(u)=k$. Recall that any 2 vertices share exactly one neighbor.

Since v and w_{2} share a neighbor, we must have some z_{2} which cannot be $w_{3}, w_{4}, \cdots, w_{k}$. Otherwise, u and v would have 2 common neighbors.

So for each $w_{i}, i \geq 2$, there is a distinct z_{i} that they share.
However, v may be adjacent to other vertices. $\operatorname{So}, \operatorname{deg}(v) \geq k=\operatorname{deg}(u)$.
If we repeat this process with all other vertices, all vertices must have the same degree.
Let a d-regular G be the counterexample. Suppose $d=2$. This must be a cycle.
If the cycle is C_{3}, then this graph does satisfy the conclusion.
If the cycle is C_{4} or larger, then it won't satisfy the given assumptions (any 2 vertices have exactly 1 common neighbor).
Thus, a counterexample would require $d \geq 3$.
Let A be the adjacency matrix of a counterexample.
Then, walks of length $2=A_{i j}^{2}= \begin{cases}d & i=j \\ 1 & i \neq j\end{cases}$
Then, $A^{2}=J+(d-1) I$.
Let \vec{v} be an eigenvector with eigenvalue $\lambda \neq d$ (so \vec{v} is orthogonal to $\overrightarrow{1}$).

$$
\begin{gathered}
\Longrightarrow A^{2} \vec{v}=\lambda^{2} \vec{v}=J \vec{v}+(d-1) \vec{v}=(d-1) \vec{v} \\
\Longrightarrow \lambda^{2} \vec{v}=(d-1) \vec{v} \Longrightarrow \lambda= \pm \sqrt{d-1}
\end{gathered}
$$

Let $\lambda_{1}=d, \lambda_{2}=\sqrt{d-1}$ multiplicity m_{2}, and $\lambda_{3}=-\sqrt{d-1}$ multiplicity m_{3}.
$\Longrightarrow 0=\operatorname{tr}(A)=$ sum of e-values $=d+m_{2}(\sqrt{d-1})+m_{3}(-\sqrt{d-1})$.
Rearranging and squaring,

$$
d^{2}=\left(m_{3}-m_{2}\right)^{2}(d-1)
$$

If $m_{3}=m_{2} \Longrightarrow d=0$, fails.
If $m_{3} \neq m_{2}$, then $d-1$ must divide d^{2}.. But $d-1$ also divides $d^{2}-1=(d+1)(d-1)$.
Then $d-1$ divides 2 consecutive numbers. Then $d-1=1 \Longrightarrow d=2$.
But we found earlier that a counterexample must have at least $d \geq 3$. Thus we have a contradiction.

