
Lecture 34: Friendship

34 Friendship
From last time: if G is d-regular, girth 5, diameter 2, then d = 2, 3, 7, and maybe 57. These conditions are
necessary, but do the graphs exist? Remember that the graphs must have d2 + 1 vertices.

d = 2: C5

d = 3: Petersen Graph
d = 7: Hoffman-Singleton graph
d = 57: unknown

Definition 34.1
A graph G that is strongly regular, denoted SRG(n, d, a, c), has n vertices and is d-regular such that

1. For any 2 adjacent vertices, they have a common neighbors.

2. For any 2 non-adjacent vertices, they have c common neighbors.

From earlier, a graph with girth 5, diameter 2, must have a = 0, because 2 adjacent vertices can never share a
neighbor since the smallest cycle is 5.
If two non adjacent vertices share two common neighbors, then we have a 4-cycle, which can also not happen.
So we must have c = 1.

So, we have classified all n and d for SRG(n, d, 0, 1).

Theorem 34.2 (Friendship)
At a party, suppose any 2 people have exactly 1 common friend.
Then the party contains a politician who is friends with everyone.

i.e. If G is a connected (finite) graph such that every 2 distinct vertices have 1 common neighbor, then
there exists a vertex adjacent to all the others.

The friendship graph Fn on 2n+ 1 vertices: for F4, this is a windmill graph.

Proof. Suppose the conclusion is false (no vertex is adjacent to all). With the "counterexample" graph, we show
it must at least be a regular graph.

We then get a contradiction.
Let u NOT be adjacent to v, with deg(u) ≥ deg(v). Our goal is to show that deg(u) ≤ deg(v).
We then repeat this on all vertices so that they all have the same degree, which will make our graph regular.

Let deg(u) = k. Recall that any 2 vertices share exactly one neighbor.
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Since v and w2 share a neighbor, we must have some z2 which cannot be w3, w4, · · · , wk.
Otherwise, u and v would have 2 common neighbors.

So for each wi, i ≥ 2, there is a distinct zi that they share.

However, v may be adjacent to other vertices. So, deg(v) ≥ k = deg(u).
If we repeat this process with all other vertices, all vertices must have the same degree.

Let a d-regular G be the counterexample. Suppose d = 2. This must be a cycle.
If the cycle is C3, then this graph does satisfy the conclusion.
If the cycle is C4 or larger, then it won’t satisfy the given assumptions (any 2 vertices have exactly 1 common
neighbor).
Thus, a counterexample would require d ≥ 3.

Let A be the adjacency matrix of a counterexample.

Then, walks of length 2 = A2
ij =

{
d i = j

1 i ̸= j

Then, A2 = J + (d− 1)I.
Let v⃗ be an eigenvector with eigenvalue λ ̸= d (so v⃗ is orthogonal to 1⃗).

=⇒ A2v⃗ = λ2v⃗ = Jv⃗ + (d− 1)v⃗ = (d− 1)v⃗

=⇒ λ2v⃗ = (d− 1)v⃗ =⇒ λ = ±
√
d− 1

Let λ1 = d, λ2 =
√
d− 1 multiplicity m2, and λ3 = −

√
d− 1 multiplicity m3.

=⇒ 0 = tr(A) = sum of e-values = d+m2(
√
d− 1) +m3(−

√
d− 1).

Rearranging and squaring,
d2 = (m3 −m2)

2(d− 1)

If m3 = m2 =⇒ d = 0, fails.
If m3 ̸= m2, then d− 1 must divide d2.. But d− 1 also divides d2 − 1 = (d+ 1)(d− 1).

Then d− 1 divides 2 consecutive numbers. Then d− 1 = 1 =⇒ d = 2.

But we found earlier that a counterexample must have at least d ≥ 3. Thus we have a contradiction.
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