33 Eigenvalues of Graphs, Two Proofs (Section 5.3)

Example 33.1

Determine the spectrum and explain how you eliminated the wrong ones

1. $\left\{(-1)^{(2)}, 0,(1)^{(2)}\right\}$
2. $\{-3.2,-1.2,0,1.2,3.2\}$
3. $\{-2.136,-0.662,0,0.662,2.136\}$
4. $\left\{-2.1,(1)^{(2)}, 2,2.1\right\}$

We know that the spectrum can not be 1 because the diameter is 3 , and thus there must be at least 4 distinct eigenvalues.
It can not be 2 because $\Delta(G)=3$, and $|\lambda| \leq \Delta(G)$.
We know the sum of eigenvalues must be 0 , so it can not be 0 .
Thus, the spectrum must be 3 .

33.1 Two Proofs (Section 5.3)

Definition 33.2

The girth of a graph is the length of the shortest cycle.

Suppose a graph has n vertices. How many edges can we pack into the graph avoiding a 3 -cycle?
Theorem 33.3
If G has n vertices and m edges and does not contain a 3 or 4 cycle (no C_{3}, C_{4}), then

$$
m \leq \frac{n \sqrt{n-1}}{2}
$$

Moreover, equality occurs if G is d-regular, girth 5 , and diameter 2 (everything can be reached in 2 steps).

What graphs obtain equality?
Lemma 33.4
If G is d-regular, girth 5 , and diameter 2 , then the total vertices that G has is $d^{2}+1$.

Proof. If we fix a single root point, notice that we can organize the graphs into sections A and B that look like the following:

Where nodes in set A are distance 1 away from the root, and nodes in set B are distance 2 away from the root.
Notice that there can not be any edges between nodes in A, because otherwise they would form a 3 cycle.
There are $d(d-1)$ edges from A to B : there are d nodes in A with degree d. There is 1 edge from the root to each one of these A vertices, and so each node in A must have $d-1$ edges to nodes in B.

As for edges from B to A, a vertex in B joints to exactly 1 vertex in A. Otherwise we would have a 4 -cycle. So, there are $(n-d-1) \cdot(1)$ of these edges. So, we must have that

$$
d(d-1)=(n-d-1)(1) \Longrightarrow n=d^{2}+1
$$

Theorem 33.5 (Hoffman-Singleton, 1960)
If G is a connected d-regular graph with girth 5 and diameter 2 , then $d=2,3,7$, and maybe 57 .

Proof. We know $\lambda=d$ is an eigenvalue with e-vector $\overrightarrow{1}=(1,1, \cdots 1)^{T}$.
Then, $A_{i j}^{2}$ is the number of walks of length 2.

$$
A_{i j}^{2}= \begin{cases}d & i=j \\ 0 & i \text { adjacent to } j \\ 1 & i \text { not adjacent to } j\end{cases}
$$

$$
\Longrightarrow A^{2}=d I+(J-A-I) \Longrightarrow J=A^{2}+A-(d-1) I
$$

Let \vec{u} be another eigenvector with eigenvalue λ. Note that \vec{u} is orthogonal to $\overrightarrow{1}$ by the spectral theorem.

$$
\begin{gathered}
\Longrightarrow \overrightarrow{0}=J \vec{u}=\left(A^{2}+A-(d-1) I\right) \vec{u}=A^{2} \vec{u}+A \vec{u}-(d-1) \vec{u} \\
=\lambda^{2} \vec{u}^{2}+\lambda \vec{u}-(d-1) \vec{u}=\left(\lambda^{2}+\lambda-(d-1)\right) \vec{u}=\overrightarrow{0} \\
\Longrightarrow \lambda^{2}+\lambda-(d-1)=0 \\
\Longrightarrow \lambda_{1}=\frac{-1+\sqrt{4 d-3}}{2} \quad \lambda_{2}=\frac{-1-\sqrt{4 d-3}}{2}
\end{gathered}
$$

With multiplicity m_{1} and m_{2}.

$$
\begin{gathered}
\Longrightarrow m_{1}+m_{2}+1=\# \text { vertices }=d^{2}+1 \text { (by lemma) } \quad * \\
\Longrightarrow \operatorname{tr}(A)=\text { sum of e-values }=d+\lambda_{1} m_{1}+\lambda_{2} m_{2}=0 \quad * *
\end{gathered}
$$

Multiply ${ }^{* *}$ by 2 and adding to * to get

$$
\left(m_{1}-m_{2}\right) \sqrt{4 d-3}=d^{2}-2 d=\text { integer } \quad * * *
$$

If $m_{1}=m_{2}$, then $d^{2}-2 d=0 \Longrightarrow d=0$ or 2 .

Otherwise if $m_{1} \neq m_{2}$, then $\sqrt{4 d-3}=k=$ integer $\Longrightarrow d=\frac{k^{2}+3}{4}$.
Sub into ${ }^{* * *}$, and rearrange the terms,

$$
16\left(m_{1}-m_{2}\right) k-k^{4}+2 k^{2}=-15 \Longrightarrow k(\quad)=-15
$$

So, k must divide 15 , so $k=1,3,5,15$.
But $d=\frac{k^{2}+3}{4}$. At $k=1,3,5,15, d=1,3,7,57$. (but it is clear that 1 does not work).

