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Example 33.1
Determine the spectrum and explain how you eliminated the wrong ones

1. {(−1)(2), 0, (1)(2)}

2. {−3.2,−1.2, 0, 1.2, 3.2}

3. {−2.136,−0.662, 0, 0.662, 2.136}

4. {−2.1, (1)(2), 2, 2.1}

We know that the spectrum can not be 1 because the diameter is 3, and thus there must be at least 4 distinct
eigenvalues.
It can not be 2 because ∆(G) = 3, and |λ| ≤ ∆(G).
We know the sum of eigenvalues must be 0, so it can not be 0.

Thus, the spectrum must be 3.

33.1 Two Proofs (Section 5.3)

Definition 33.2
The girth of a graph is the length of the shortest cycle.

Suppose a graph has n vertices. How many edges can we pack into the graph avoiding a 3-cycle?

Theorem 33.3
If G has n vertices and m edges and does not contain a 3 or 4 cycle (no C3, C4), then

m ≤ n
√
n− 1

2

Moreover, equality occurs if G is d-regular, girth 5, and diameter 2 (everything can be reached in 2 steps).

What graphs obtain equality?

Lemma 33.4
If G is d-regular, girth 5, and diameter 2, then the total vertices that G has is d2 + 1.

Proof. If we fix a single root point, notice that we can organize the graphs into sections A and B that look like
the following:
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Where nodes in set A are distance 1 away from the root, and nodes in set B are distance 2 away from the root.

Notice that there can not be any edges between nodes in A, because otherwise they would form a 3 cy-
cle.
There are d(d− 1) edges from A to B: there are d nodes in A with degree d. There is 1 edge from the root to
each one of these A vertices, and so each node in A must have d− 1 edges to nodes in B.

As for edges from B to A, a vertex in B joints to exactly 1 vertex in A. Otherwise we would have a 4-cycle. So,
there are (n− d− 1) · (1) of these edges. So, we must have that

d(d− 1) = (n− d− 1)(1) =⇒ n = d2 + 1

Theorem 33.5 (Hoffman-Singleton, 1960)
If G is a connected d-regular graph with girth 5 and diameter 2, then d = 2, 3, 7, and maybe 57.

Proof. We know λ = d is an eigenvalue with e-vector 1⃗ = (1, 1, · · · 1)T .
Then, A2

ij is the number of walks of length 2.

A2
ij =


d i = j

0 i adjacent to j

1 i not adjacent to j

=⇒ A2 = dI + (J −A− I) =⇒ J = A2 +A− (d− 1)I

Let u⃗ be another eigenvector with eigenvalue λ. Note that u⃗ is orthogonal to 1⃗ by the spectral theorem.

=⇒ 0⃗ = Ju⃗ = (A2 +A− (d− 1)I)u⃗ = A2u⃗+Au⃗− (d− 1)u⃗

= λ2u⃗2 + λu⃗− (d− 1)u⃗ = (λ2 + λ− (d− 1))u⃗ = 0⃗

=⇒ λ2 + λ− (d− 1) = 0

=⇒ λ1 =
−1 +

√
4d− 3

2
λ2 =

−1−
√
4d− 3

2

With multiplicity m1 and m2.

=⇒ m1 +m2 + 1 = # vertices = d2 + 1 (by lemma) ∗

=⇒ tr(A) = sum of e-values = d+ λ1m1 + λ2m2 = 0 ∗ ∗

Multiply ** by 2 and adding to * to get

(m1 −m2)
√
4d− 3 = d2 − 2d = integer ∗ ∗∗

If m1 = m2, then d2 − 2d = 0 =⇒ d = 0 or 2 .
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Otherwise if m1 ̸= m2, then
√
4d− 3 = k = integer =⇒ d = k2+3

4 .
Sub into ***, and rearrange the terms,

16(m1 −m2)k − k4 + 2k2 = −15 =⇒ k( ) = −15

So, k must divide 15, so k = 1, 3, 5, 15.
But d = k2+3

4 . At k = 1, 3, 5, 15, d = 1, 3, 7, 57. (but it is clear that 1 does not work).
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