32 Eigenvalues of Graphs

From last time, we had the Petersen graph, which has spectrum $\left\{3^{(1)},(-2)^{(4)},(1)^{(5)}\right\}$.
We know that K_{5} can be decomposed into two copies of the cycle c_{5}.
What about K_{10} decomposing into 3 copies of the petersen graph?
Notice that in the K_{5} case, we can see that we get

$$
A\left(K_{5}\right)=A\left(C_{5}^{\prime}\right)+A\left(C_{5}^{\prime \prime}\right)
$$

where C_{5}^{\prime} and $C_{5}^{\prime \prime}$ are the two cycles it can decompose to.
Theorem 32.1
The edges of K_{10} can not be partitioned into 3 copies of the Petersen graph.

Proof. Assume K_{10} can be partitioned. Then

$$
A\left(K_{10}\right)=A\left(P_{1}\right)+A\left(P_{2}\right)+A\left(P_{3}\right)
$$

Let $\operatorname{eig}_{i}(\lambda)$ be the eigenspace of λ for $A\left(P_{i}\right)$.
We know that $\overrightarrow{1}$ is an eigenvector, and all others are orthogonal (by spectral theorem).
We see that in the spectrum of the Petersen graph, $\lambda=1$ has multiplicity 5 .

$$
\Longrightarrow \operatorname{dim}\left(\operatorname{eig}_{1}(\lambda=1)\right)=\operatorname{dim}\left(\operatorname{eig}_{2}(\lambda=1)\right)=5
$$

K_{10} having 10 vertices means that the eigenvectors are all in \mathbb{R}^{10}.
Because we have $\overrightarrow{1}$ as an eigenvector, we only have 9 more linearly independent eigenvectors to make up \mathbb{R}^{10}, so $\operatorname{eig}_{1}(1) \cap \operatorname{eig}_{2}(1) \neq \varnothing$.

Let $\vec{x} \in \operatorname{eig}_{1}(1) \cap \operatorname{eig}_{2}(1)$, i.e. $A\left(P_{1}\right) \vec{x}=1 \vec{x}$ and $A\left(P_{2}\right) \vec{x}=1 \vec{x}$. Then, where J is the all ones matrix,

$$
\Longrightarrow A\left(K_{10}\right) \vec{x}=(J-I) \vec{x}=J \vec{x}-I \vec{x}=\overrightarrow{0}-\vec{x}=-\vec{x}
$$

Because $\overrightarrow{1} \cdot \vec{x}=0$ because they are orthonormal.
Then,

$$
\begin{aligned}
-\vec{x} & =A\left(K_{n}\right) \vec{x} \\
& =\left(A\left(P_{1}\right)+A\left(P_{2}\right)+A\left(P_{3}\right)\right) \vec{x} \\
& =A\left(P_{1}\right) \vec{x}+A\left(P_{2}\right) \vec{x}+A\left(P_{3}\right) \vec{x} \\
& =1 \vec{x}+1 \vec{x}+A\left(P_{3}\right) \vec{x} \\
A\left(P_{3}\right) \vec{x} & =-3 \vec{x}
\end{aligned}
$$

But, -3 is not an eigenvalue of the Petersen graph, so this is a contradiction.

Note 32.2
Recall that $\operatorname{tr}(A)$ is the sum of the diagonal entries, which is the sum of the eigenvalues.

We have the following:
Theorem 32.3
The sum of the spectrum of any (simple) graph is 0 .

Theorem 32.4 (Cayley-Hamilton)
For any square matrix A, if $p_{A}(z)$ is its characteristic polynomial, then $p_{A}(A)=0$ matrix $(A$ is a root of its characteristic polynomial).

Example 32.5

Take the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$.
Then,

$$
p_{A}(z)=(1-z)(2-z)^{2} \Longrightarrow p_{A}(A)=(I-A)(2 I-A)^{2}=0 \text { matrix }
$$

Does there exist a lower degree polynomial $q(z)$ where $q(A)=0$ matrix? Yes, there is $q(z)=(1-z)(2-z) \Longrightarrow$ $q(A)=(I-A)(2 I-A)=0$ matrix.

The lowest degree polynomial where this holds is the minimal polynomial.

Theorem 32.6

If A is diagonalizable (n linearly independent eigenvectors) (holds for adjacency matrix by spectral theorem) with distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{k}$, then the minimal polynomial is $m(z)=\left(\lambda_{1}-z\right)\left(\lambda_{2}-z\right) \cdots\left(\lambda_{k}-z\right)$ (all linear factors).

Definition 32.7

The diameter of G is the greatest distance between any 2 vertices.

Theorem 32.8

If G has diameter d, then the spectrum has at least $d+1$ distinct eigenvalues, i.e. the diameter is strictly less than the number of distinct eigenvalues.

Proof. Let $\lambda_{1}, \cdots, \lambda_{k}$ be the distinct eigenvalues, and let A be the adjacency matrix.
We show that $I, A, A^{2}, \cdots, A^{d}$ is linearly independent.
Suppose $c_{0} I+c_{1} A+c_{2} A^{2}+\cdots+c_{d} A^{d}=0$ matrix.
Recall that A^{t} represents the number of walks of length t between 2 vertices.
Then, diameter being d means there is some $A_{i j}^{d} \geq 1$, but $A^{d-1} i j=A_{i j}^{d-2}=\cdots=0$.
Then, we must have $c_{d}=0$ for $c_{0} I+c_{1} A+c_{2} A^{2}+\cdots+c_{d} A^{d}=0$ to be true.
Similarly, there must be $A_{i_{1} j_{1}}^{d-1} \geq 1$ with all lower powers equal to 0 (Otherwise, distance between i and j would not be d).
So, $c_{d}=0$, and we continue until concluding that $c_{0}=c_{1}=\cdots=c_{d}=0$.
Recall that the minimum polynomial $\left(\lambda_{1}-z\right)\left(\lambda_{2}-z\right) \cdots\left(\lambda_{k}-z\right)$ has degree k, and $c_{0} I+c_{1} A+c_{2} A^{2}+\cdots+c_{d} A^{d}=0$ matrix.
Then, I, A, \cdots, A^{d} are linearly independent.
Since they are linearly independent, there is no polynomial of degree d that results in $m(A)=0$ matrix.
But the minimum degree polynomial has degree k, so $k>d$.
k is the number of distinct eigenvalues, which is $\geq d+1$.

