32 Eigenvalues of Graphs

From last time, we had the Petersen graph, which has spectrum $\{3^{(1)}, (-2)^{(4)}, (1)^{(5)}\}$. We know that K_5 can be decomposed into two copies of the cycle c_5 . What about K_{10} decomposing into 3 copies of the petersen graph?

Notice that in the K_5 case, we can see that we get

$$A(K_5) = A(C'_5) + A(C''_5)$$

where C'_5 and C''_5 are the two cycles it can decompose to.

Theorem 32.1

The edges of K_{10} can not be partitioned into 3 copies of the Petersen graph.

Proof. Assume K_{10} can be partitioned. Then

$$A(K_{10}) = A(P_1) + A(P_2) + A(P_3)$$

Let $\operatorname{eig}_i(\lambda)$ be the eigenspace of λ for $A(P_i)$.

We know that 1 is an eigenvector, and all others are orthogonal (by spectral theorem).

We see that in the spectrum of the Petersen graph, $\lambda = 1$ has multiplicity 5.

 $\implies \dim(\operatorname{eig}_1(\lambda = 1)) = \dim(\operatorname{eig}_2(\lambda = 1)) = 5$

 K_{10} having 10 vertices means that the eigenvectors are all in \mathbb{R}^{10} . Because we have $\vec{1}$ as an eigenvector, we only have 9 more linearly independent eigenvectors to make up \mathbb{R}^{10} , so $\operatorname{eig}_1(1) \cap \operatorname{eig}_2(1) \neq \emptyset$.

Let $\vec{x} \in \text{eig}_1(1) \cap \text{eig}_2(1)$, i.e. $A(P_1)\vec{x} = 1\vec{x}$ and $A(P_2)\vec{x} = 1\vec{x}$. Then, where J is the all ones matrix,

$$\implies A(K_{10})\vec{x} = (J-I)\vec{x} = J\vec{x} - I\vec{x} = \vec{0} - \vec{x} = -\vec{x}$$

Because $\vec{1} \cdot \vec{x} = 0$ because they are orthonormal. Then,

$$\begin{aligned} -\vec{x} &= A(K_n)\vec{x} \\ &= (A(P_1) + A(P_2) + A(P_3))\vec{x} \\ &= A(P_1)\vec{x} + A(P_2)\vec{x} + A(P_3)\vec{x} \\ &= 1\vec{x} + 1\vec{x} + A(P_3)\vec{x} \\ A(P_3)\vec{x} &= -3\vec{x} \end{aligned}$$

But, -3 is not an eigenvalue of the Petersen graph, so this is a contradiction.

Note 32.2

Recall that tr(A) is the sum of the diagonal entries, which is the sum of the eigenvalues.

We have the following:

Theorem 32.3

The sum of the spectrum of any (simple) graph is 0.

Theorem 32.4 (Cayley-Hamilton)

For any square matrix A, if $p_A(z)$ is its characteristic polynomial, then $p_A(A) = 0$ matrix (A is a root of its characteristic polynomial).

Example 32.5 Take the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Then, $p_A(z) = (1-z)(2-z)^2 \implies p_A(A) = (I-A)(2I-A)^2 = 0$ matrix

Does there exist a lower degree polynomial q(z) where q(A) = 0 matrix? Yes, there is $q(z) = (1 - z)(2 - z) \implies q(A) = (I - A)(2I - A) = 0$ matrix.

The lowest degree polynomial where this holds is the minimal polynomial.

Theorem 32.6

If A is diagonalizable (n linearly independent eigenvectors) (holds for adjacency matrix by spectral theorem) with <u>distinct</u> eigenvalues $\lambda_1, \dots, \lambda_k$, then the minimal polynomial is $m(z) = (\lambda_1 - z)(\lambda_2 - z) \cdots (\lambda_k - z)$ (all linear factors).

Definition 32.7

The **diameter** of G is the greatest distance between any 2 vertices.

Theorem 32.8

If G has diameter d, then the spectrum has at least d + 1 distinct eigenvalues, i.e. the diameter is strictly less than the number of distinct eigenvalues.

Proof. Let $\lambda_1, \dots, \lambda_k$ be the distinct eigenvalues, and let A be the adjacency matrix.

We show that I, A, A^2, \dots, A^d is linearly independent.

Suppose $c_0I + c_1A + c_2A^2 + \dots + c_dA^d = 0$ matrix. Recall that A^t represents the number of walks of length t between 2 vertices.

Then, diameter being d means there is some $A_{ij}^d \ge 1$, but $A^{d-1}ij = A_{ij}^{d-2} = \cdots = 0$. Then, we must have $c_d = 0$ for $c_0I + c_1A + c_2A^2 + \cdots + c_dA^d = 0$ to be true.

Similarly, there must be $A_{i_1j_1}^{d-1} \ge 1$ with all lower powers equal to 0 (Otherwise, distance between *i* and *j* would not be *d*).

So, $c_d = 0$, and we continue until concluding that $c_0 = c_1 = \cdots = c_d = 0$.

Recall that the minimum polynomial $(\lambda_1 - z)(\lambda_2 - z) \cdots (\lambda_k - z)$ has degree k, and $c_0 I + c_1 A + c_2 A^2 + \cdots + c_d A^d = 0$ matrix.

Then, I, A, \dots, A^d are linearly independent.

Since they are linearly independent, there is no polynomial of degree d that results in m(A) = 0 matrix.

But the minimum degree polynomial has degree k, so k > d. k is the number of distinct eigenvalues, which is $\geq d + 1$.