Lecture 32: Eigenvalues of Graphs

32 Eigenvalues of Graphs

From last time, we had the Petersen graph, which has spectrum {3(1), (=2)*), (1))},
We know that K5 can be decomposed into two copies of the cycle cs.
What about K¢ decomposing into 3 copies of the petersen graph?

Notice that in the K5 case, we can see that we get
A(Ks5) = A(Cs) + A(CY)

where Cf and C{' are the two cycles it can decompose to.

Theorem 32.1
The edges of K¢ can not be partitioned into 3 copies of the Petersen graph.

Proof. Assume Ky can be partitioned. Then
A(Ky9) = A(P1) + A(Py) + A(Ps)

Let eig;(\) be the eigenspace of A for A(P;).
We know that 1 is an eigenvector, and all others are orthogonal (by spectral theorem).

We see that in the spectrum of the Petersen graph, A = 1 has multiplicity 5.
= dim(eig; (A = 1)) = dim(eigo(A =1)) =5

Ko having 10 vertices means that the eigenvectors are all in R'°.
Because we have 1 as an eigenvector, we only have 9 more linearly independent eigenvectors to make up R'?,

so eigy (1) Neigy(1) # @.
Let & € eig; (1) Neigy(1), i.e. A(P1)Z = 12 and A(P,)Z = 1Z. Then, where J is the all ones matrix,

— AK))i=J-DEF=J—-If=0-%F= -7

Because 1 - & = 0 because they are orthonormal.

Then,
-7 = A(K,)Z

= (A(P1) + A(P2) + A(P3))@

= A(P)Z + A(P)Z + A(Ps)%

=17+ 17+ A(P3)T

A(P3)Z = —3%
But, -3 is not an eigenvalue of the Petersen graph, so this is a contradiction. O
Note 32.2

Recall that tr(A) is the sum of the diagonal entries, which is the sum of the eigenvalues.

We have the following:

Theorem 32.3
The sum of the spectrum of any (simple) graph is 0.

Theorem 32.4 (Cayley-Hamilton)
For any square matrix A, if p4(z) is its characteristic polynomial, then p4(A) = 0 matrix (A is a root of
its characteristic polynomial).
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Example 32.5

Take the matrix A =

S O =
S N O
N OO

Then,
pa(2) = (1-2)(2-2)? = pa(A) = (I — A)(2] — A)? = 0 matrix

Does there exist a lower degree polynomial ¢(z) where g(A) = 0 matrix? Yes, there is ¢(z) = (1—-2)(2—2) =
q(A) = (I — A)(2I — A) = 0 matrix.

The lowest degree polynomial where this holds is the minimal polynomial.

Theorem 32.6

If A is diagonalizable (n linearly independent eigenvectors) (holds for adjacency matrix by spectral theorem)
with distinct eigenvalues Aq, - -, Ag, then the minimal polynomial is m(z) = (A — 2)(A2 — 2) - - (Ax — 2)
(all linear factors).

Definition 32.7
The diameter of G is the greatest distance between any 2 vertices.

Theorem 32.8
If G has diameter d, then the spectrum has at least d 4+ 1 distinct eigenvalues, i.e. the diameter is strictly
less than the number of distinct eigenvalues.

Proof. Let Aq1,---, A\, be the distinct eigenvalues, and let A be the adjacency matrix.
We show that I, A, A2, ..., A% is linearly independent.

Suppose col + c1 A+ coA? + -+ + cgA? = 0 matrix.
Recall that A’ represents the number of walks of length ¢ between 2 vertices.

Then, diameter being d means there is some Afj > 1, but A% 1ij = Af{Q =...=0.

Then, we must have ¢g = 0 for coI + c1 A+ c2A% + -+ + c4A% = 0 to be true.

Similarly, there must be Ai;ll > 1 with all lower powers equal to 0 (Otherwise, distance between i and j
would not be d).

So, cq = 0, and we continue until concluding that ¢o =¢; =--- =¢4 =0.

Recall that the minimum polynomial (A; —2)(Aa—2) - - - (A, —2) has degree k, and col +cy A+ca A%+ - -+cg A = 0
matrix.

Then, I, A,---, A% are linearly independent.

Since they are linearly independent, there is no polynomial of degree d that results in m(A) = 0 matrix.

But the minimum degree polynomial has degree k, so k > d.
k is the number of distinct eigenvalues, which is > d + 1. O
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