31 Graph Spectrum (Section 5.2)

Last time, we had that the spectral theorem implies that if we have a square, real, symmetric matrix, then all eigenvalues are real, there are n orthonormal linearly independent eigenvectors, and the algebraic multiplicity equals the geometric multiplicity.

31.1 Graph Spectrum (Section 5.2)

Definition 31.1

A graph G is d-regular if every vertex has degree d, i.e. the total edges incident to each vertex is d.

Given the adjacency matrix of a d-regular graph, each row of the adjacency matrix should have d entries of 1 s . We have the following:

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
0 & 1 & 1 & 0 & \cdots \\
\vdots & & & &
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]=\left[\begin{array}{c}
d \\
d \\
\vdots \\
d
\end{array}\right]=d\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]} \\
A \vec{v}=d \vec{v}
\end{gathered}
$$

Thus for any d-regular graph, d is always an eigenvalue, with the corresponding eigenvector above.
Theorem 31.2
Let $\Delta(G)$ be the maximum degree of G. Then for any eigenvalue λ of the adjacency matrix A,

$$
|\lambda| \leq \Delta(G)
$$

In other words, the eigenvalue s never exceed the maximum degree of the graph, up to absolute value.
Moreover, equality occurs if and only if G is d-regular. In this case, $\lambda=d$ is always an eigenvalue with eigenvector

$$
\overrightarrow{1}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

If G is also connected, $\lambda=d$ has multiplicity 1 .

Proof. Let $\vec{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ be an eigenvector with eigenvalue λ. Then if v_{i} is the largest entry of \vec{v} up to absolute value,

$$
\begin{gathered}
{[A]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\lambda\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]} \\
A \vec{v}=\lambda \vec{v} \\
\Longrightarrow|\lambda|\left|v_{i}\right|=\left|\lambda v_{i}\right|=\left|\sum_{j=1}^{n} a_{i j} v_{j}\right| \leq \sum_{j=1}^{n} a_{i j}\left|v_{j}\right| \leq \sum_{j=1}^{n} a_{i j}\left|v_{i}\right|=\left|v_{i}\right| \cdot \text { degree of vertex } i \leq\left|v_{i}\right| \Delta(G) \\
\Longrightarrow|\lambda|\left|v_{i}\right| \leq\left|v_{i}\right| \Delta(G) \Longrightarrow|\lambda| \leq \Delta(G)
\end{gathered}
$$

Where the first inequality is derived from the triangle inequality.

Definition 31.3

The spectrum of G is the multiset of eigenvalues of the adjacency matrix of G.

Example 31.4

The following graph is called the Petersen Graph:

It has 10 vertices, 15 edges, is 3-regular, and the smallest cycle is length 5 .
It is often used as counterexamples in graph theory because of its strange properties.

By computer, the spectrum of the graph is

$$
\left\{(3)^{(1)},(1)^{(5)},(-2)^{(4)}\right\}
$$

Where the superscripts represent the multiplicity of the eigenvalue. If multiplicity is 1 , the superscript can be omitted.

Example 31.5
The complete graph K_{n} is the graph where every 2 vertices has an edge between them. Notice that K_{n} is a $n-1$ regular graph.

Theorem 31.6

The spectrum of K_{n} is

$$
\left\{(n-1)^{(1)},(-1)^{(n-1)}\right\}
$$

Proof. Let J be the all ones matrix (every entry is 1). We know that $\lambda=n-1$ has eigenvector $\overrightarrow{1}$.
Let \vec{v} be another eigenvector not associated with $\lambda=n-1$.

$$
A\left(K_{n}\right) \vec{v}=(J-I) \vec{v}=J \vec{v}-I \vec{v}=J \vec{v}-\vec{v}
$$

Here, in $J \vec{v}$, notice we are dotting $\overrightarrow{1} \cdot \vec{v}$. Because these are both eigenvectors, by the spectral theorem, they must be orthogonal, so $\overrightarrow{1} \cdot \vec{v}=0$.

$$
\begin{gathered}
J \vec{v}-\vec{v}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]-\vec{v}=-\vec{v} \\
\Longrightarrow A\left(K_{n}\right) \vec{v}=-\vec{v}
\end{gathered}
$$

So all other eigenvalues are -1 .
Given the complete graph K_{5}, can we partition the edges into two copies of C_{5}, the cycle of length 5 ?
By drawing K_{5} as a pentagon with a star inscribed inside, it is simple to see that we can partition the edges to create two 5-cycles.

What about the edges of K_{10} ? Can they be decomposed into 3 copies of the Petersen Graph?

