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30.1 Polynomial Spaces
From last time, we had:
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(x⃗) =

(
||x⃗− w⃗i||2 − d21

) (
||x⃗− w⃗i||2 − d22

)
We showed that functions must be linearly independent, and they lie in
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Thus the functions lie in a space spanned by

1 + n+

(
n

2

)
+ n+ n+ 1 =

(n+ 1)(n+ 4)

2

Since the functions fw⃗i
(x⃗) must be linearly independent, they cannot exceed the dimension of the space, and

remember that the number of polyonmials is equal to the number of points in the space. # polynomials = #
points ≤ dimension of the space = (n+1)(n+4)

2 .

Note that equality can not be obtained (we can not reach this upper bound).

30.2 The Basics of Graphs (Section 5.1)
Recall the characteristic polynomial of A is pA(λ) = det(A− λI). The roots are the eigenvalues of A i.e. λ
such that Av⃗ = λv⃗, where v⃗ ̸= 0⃗ is an eigenvector.

The algebraic multiplicity of λ is how many times it occurs in pA(λ).

The geometric multiplicity of λ is the number of linearly independent eigenvectors associated with λ, i.e.
the dimension of the eigenspace of λ.

Example 30.1

A =

[
1 −3
3 7

]
=⇒ pA(λ) = (4− λ)2

So λ = 4 is an eigenvalue with algebraic multiplicity 2.

But we find the eigenvectors for λ = 4 are
[
1
−1

]
x1, x1 ∈ R \ {0}. There is only one linearly indepe-

dent eigenvector, so the geometric multiplicity of λ = 4 is only 1.

Properties of Eigenvalues:

1. Trace of A, tr(A) = sum of the diagonal entries = sum of all eigenvalues.

2. det(A) = product of eigenvalues.

Theorem 30.2 (Spectral Theorem)
Let A be an n× n, real, symmetric matrix (i.e. A = AT ). Then,

1. All eigenvalues are real

2. For any eigenvalue λ, the algebraic multiplicity is equal to the geometric multiplicity

3. Matrix A has an orthonormal basis of eigenvectors that spans Rn.
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Definition 30.3
A graph is simple if there are no multiple edges or loops.

The adjacency matrix of a (simple) graph G on n vertices is

(A(G))ij =

{
1 if vertex i is adjacent to vertex j

0 otherwise

So, if i ∼ j form an edge, then i is adjacent to j and j is adjacent to i, which means that Aij = Aji = 1.
So, the adjacency matrix must be symmetric.

Thus, the adjacency matrix satisfies the assumptions of the spectral theorem! This is the basis of spectral
graph theory.

Theorem 30.4
If A = A(G) is the adjacency matrix, then the ijth entry of Ak is the total walks of length k that go from
vertex i to j.

Example 30.5
Suppose we have the following graph:

Then we have the following adjacency matrix:

A =


0 1 1 1 0
1 0 1 0 0
1 1 0 1 0
1 0 1 0 1
0 0 0 1 0



=⇒ A4 =


16 9 15 10 6
9 10 9 12 2
15 9 16 10 6
10 12 10 15 2
6 2 6 2 3


Here, entry (2, 5) is 2. So, the total number of walks of length 4 from 2 to 5 is 2.
These walks are 2 → 3 → 1 → 4 → 5, and 2 → 1 → 3 → 4 → 5.

Entry (5, 5) is 3 ( number of walks of length 4 that start and end at 5). These are:
5 → 4 → 5 → 4 → 5
5 → 4 → 1 → 4 → 5
5 → 4 → 3 → 4 → 5

Given a graph, we may label the vertices differently. How does this effect the eigenvalues of the two matrices?
Surprisingly, the eigenvalues do not change.
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Theorem 30.6
Given graph G, the eigenvalues are determined: Any relabeling of the vertices does not change the eigen-
values.
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