3 Affine Combinations (Section 2.1)

3.1 Introduction

Definition 3.1

Let $\vec{v}_{1}, \cdots, \vec{v}_{m} \in \mathbb{R}^{n}, c_{1}, \cdots, c_{m} \in \mathbb{R}$. An affine combination of $\vec{v}_{1}, \cdots, \vec{v}_{m}$ is a linear combination $\sum_{i=1}^{m} c_{i} \vec{v}_{i}$ such that $\sum_{i=1}^{m} c_{i}=1$.

The set of all affine combinations of a set of vectors S is called the affine hull, denoted aff (S). This is similar to how the span of a set is all linear combinations of a set. An affine hull is all affine combinations of a set.

Example 3.2

1. $S=\left\{\vec{v}_{1}\right\} \Longrightarrow$ aff $S=\left\{\vec{v}_{1}\right\}$

Imagine in previous linear algebra courses, how for $T=\left\{\vec{v}_{1}\right\}, \operatorname{span}(T)=\left\{c \vec{v}_{1}: c \in \mathbb{R}\right\}$
2. $S=\left\{\vec{v}_{1}, \vec{v}_{2}\right\} \Longrightarrow \operatorname{aff}(S)$ has vectors of the form $\vec{y}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}$, where $c_{1}+c_{2}=1$ or $c_{1}=1-c_{2}$.

So we can rewrite \vec{y} as $\vec{y}=\left(1-c_{2}\right) \vec{v}_{1}+c_{2} \vec{v}_{2}=\vec{v}_{1}+c_{2}\left(\vec{v}_{2}-\vec{v}_{1}\right)$, which is equivalent of the same form as $\vec{p}_{0}+t \vec{v}$, which is the parameterization of a line from calculus.
Thus, aff (S) is a line through \vec{v}_{1} in the direction of $\vec{v}_{2}-\vec{v}_{1}$ (assuming the vectors are not multiples of each other).

In linear algebra, we say two vectors are linearly independent if their span creates a plane. The analogue here is that the affine hull of two vectors just creates a line - it reduces the dimensionality down by one dimension because of the restriction on the coefficients.

Similar, one can show if $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are not all on a line, $\operatorname{aff}\left(\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}\right)$ is a plane.

How do we determine if $\vec{y} \in \operatorname{aff}(S)$?

Theorem 3.3

Vector $\vec{y} \in \mathbb{R}^{n}$ is an affine combination of $\vec{v}_{1}, \cdots, \vec{v}_{m} \in \mathbb{R}^{n}$ if and only if $\vec{y}-\vec{v}_{1}$ (or use any of $\vec{v}_{2}, \cdots, \vec{v}_{m}$) is a linear combination of $\vec{v}_{2}-\vec{v}_{1}, \vec{v}_{3}-\vec{v}_{1}, \cdots, \vec{v}_{m}-\vec{v}_{1}$.

Proof. (\Longrightarrow) : Given that \vec{y} is an affine combination, $\vec{y}=\sum_{i=1}^{m} c_{i} \vec{v}_{i}, \sum_{i=1}^{m} c_{i}=1$.
Then $\vec{y}-\vec{v}_{1}=\left(c_{1}-1\right) \vec{v}_{1}+\sum_{i=2}^{m} c_{i} \vec{v}_{i}$ (note that $c_{1}-1=-c_{2}-c_{3}-\cdots-c_{m}$)
Thus, we have that

$$
\begin{aligned}
\vec{y}-\vec{v}_{1} & =\left(-c_{2}-c_{3}-\cdots-c_{m}\right) \vec{v}_{1}+\sum_{i=2}^{m} c_{i} \vec{v}_{i} \\
& =c_{2}\left(\vec{v}_{2}-\overrightarrow{v_{1}}\right)+c_{3}\left(\vec{v}_{3}-\vec{v}_{1}\right)+\cdots+c_{m}\left(\vec{v}_{m}-\vec{v}_{1}\right)
\end{aligned}
$$

Which means that $\vec{y}-\vec{v}_{1}$ is a linear combination of $\vec{v}_{2}-\vec{v}_{1}, \cdots, \vec{v}_{m}-\vec{v}_{1}$
Proof. (\Longleftarrow) Given that $\vec{y}-\vec{v}_{1}$ is a linear combination of $\vec{v}_{2}-\vec{v}_{1}, \vec{v}_{3}-\vec{v}_{1}, \cdots, \vec{v}_{m}-\vec{v}_{1}$, we have that

$$
\begin{aligned}
\vec{y}-\vec{v}_{1} & =k_{2}\left(\vec{v}_{2}-\vec{v}_{1}\right)+k_{3}\left(\vec{v}_{3}-\vec{v}_{1}\right)+\cdots+k_{m}\left(\vec{v}_{m}-\vec{v}_{1}\right) \\
\vec{y} & =\left(1-k_{2}-k_{3}-\cdots-k_{m}\right) \vec{v}_{1}+k_{2} \vec{v}_{2}+k_{3} \vec{v}_{3}+\cdots+k_{m} \vec{v}_{m}
\end{aligned}
$$

Here, we can see that \vec{y} is a linear combination of $\vec{v}_{1}, \cdots, \vec{v}_{m}$, and the coefficients of $\vec{v}_{1}, \cdots, \vec{v}_{m}$ add up to 1 . Thus, \vec{y} is an affine combination of $\vec{v}_{1}, \cdots, \vec{v}_{m}$.

Example 3.4

Express $\vec{y}=(17,1,5)$ as an affine combination of $\{(-3,1,1),(0,4,-2),(4,-2,6)\}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.
The first step we wish to take is to represent $\vec{y}-\vec{v}_{1}$ as a linear combination of $\vec{v}_{2}-\vec{v}_{1}$ and $\vec{v}_{3}-\vec{v}_{1}$:

$$
\vec{y}-\vec{v}_{1}=(20,0,4), \vec{v}_{2}-\vec{v}_{1}=(3,3,-3), \vec{v}_{3}-\vec{v}_{1}=(7,-3,5) .
$$

We row reduce $\left[\begin{array}{cc|c}3 & 7 & 20 \\ 3 & -3 & 0 \\ -3 & 5 & 4\end{array}\right]$ down to $\left[\begin{array}{ll|l}1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$, which implies that

$$
\vec{y}-\vec{v}_{1}=2\left(\vec{v}_{2}-\vec{v}_{1}\right)+2\left(\vec{v}_{3}-\vec{v}_{1}\right)
$$

Now, we just have to solve for \vec{y} :

$$
\vec{y}=\vec{v}_{1}+2\left(\vec{v}_{2}-\vec{v}_{1}\right)+2\left(\vec{v}_{3}-\vec{v}_{1}\right)=-3 \vec{v}_{1}+2 \vec{v}_{2}+2 \vec{v}_{3}
$$

Here, the sum of the coefficients here is 1 , so we know this is an affine combination.

Note 3.5

If $\vec{y} \in \mathbb{R}^{n}$, and $\vec{v}_{1}, \cdots, \vec{v}_{n} \in \mathbb{R}^{n}$ is a basis, to check if \vec{y} is in the affine hull, simply find the unique linear combination. Then, we just have to check if this linear combination has coefficients that sum to 1 (the unique linear combination is the only way you can write the combination anyways, so we only have to check if this one is affine).

Definition 3.6

A set S is affine if for any $\vec{p}, \vec{q} \in S,(1-t) \vec{p}+t \vec{q} \in S$ for any $t \in \mathbb{R}$.

Definition 3.7

A translate of $S \subseteq \mathbb{R}^{n}$ by $\vec{p} \in \mathbb{R}^{n}$ is $S+\vec{p}=\{\vec{s}+\vec{p}: \vec{s} \in S\}$ (similar to cosets in abstract algebra).
A flat is a translate of a subspace of \mathbb{R}^{n}. (Imagine a plane that is shifted to not pass the origin)

Theorem 3.8

We have that a set S is affine if and only if S is a flat.

Definition 3.9

The (standard) homogeneous form of $\vec{v} \in \mathbb{R}^{n}$ is

$$
\tilde{v}=\left[\begin{array}{l}
\vec{v} \\
1
\end{array}\right] \in \mathbb{R}^{n+1}
$$

