
Lecture 28: Oddtown and Eventown, Other Results

28 Oddtown and Eventown, Other Results
From last time, we had that if A1, · · · , Am ⊆ [n], |Ai| even, |Ai ∩Aj | even, then m ≤ 2⌊n/2⌋.

Proof. Let s = {v⃗1, · · · , v⃗m} be characteristic vectors W = span(S).

We showed that S ⊆ S⊥ =⇒ W ⊆ W⊥.

We know that the number of sets is m = |S| ≤ |span(S)| = |W |, which means the number of sets will
have an upper bound if we know |W |.

It can be shown if W is a subspace of a vector space of dimension n,

dim(W ) + dim(W⊥) = n

Note that here we are in Fn
2 .

But we know that W ⊆ W⊥.
So, we have that dim(W ) ≤ ⌊n

2 ⌋.

Suppose W has a basis u⃗1, u⃗2, · · · , u⃗⌊n/2⌋.

How large is W? We know that any vector z⃗ ∈ W is of the form z⃗ = a1u⃗1+a2u⃗2+· · ·+a⌊n/2⌋u⃗⌊n/2⌋, with ai ∈ F2.

Thus, there can be at most 2⌊n/2⌋ such vectors in W .
So, the number of sets = m = |S| ≤ |span(S)| = |W | ≤ 2⌊n/2⌋.

28.1 Other Cases

Theorem 28.1
Let A1, · · · , Am ⊆ [n] such that

1. |Ai| is odd for 1 ≤ i ≤ m

2. |Ai ∩Aj | is odd for 1 ≤ i ̸= j ≤ m

Then m ≤ 2⌊(n−1)/2⌋.

Theorem 28.2 (Reverse Oddtown)
Let A1, · · · , Am ⊆ [n], such that

1. |Ai| is even, 1 ≤ i ≤ m

2. |Ai ∩Aj | is odd, 1 ≤ i ̸= j ≤ m

Then if n is odd, m ≤ n.
If n is even, m ≤ n− 1.

Theorem 28.3 (Fisher’s Inequality)
Fix an integer k, 1 ≤ k ≤ n.
Let A1, · · · , Am ⊆ [n] be distinct such that

|Ai ∩Aj | = k 1 ≤ i ̸= j ≤ m

Then m ≤ n.

Proof. Let v⃗1, · · · , v⃗m ∈ Rn be the usual characteristic vectors.
It suffices to show the set of vectors is linearly independent over Rn.

Recall that v⃗i · v⃗j = |Ai ∩Aj | = k, v⃗i · v⃗i = |Ai|.
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Let u⃗ = a1v⃗1 + a2v⃗2 + · · ·+ amv⃗m = 0⃗. (We will show that all ai’s must be 0)

0 = u⃗ · u⃗ = (a1v⃗1 + · · ·+ amv⃗m) · (a1v⃗1 + · · ·+ amv⃗m)

=

m∑
i=1

a2i (v⃗i · v⃗i) + 2
∑

1≤i<j≤m

aiaj(v⃗i · v⃗j)

=

m∑
i=1

a2i |Ai|+ 2
∑

1≤i<j≤m

aiajk

=

m∑
i=1

a2i (|Ai| − k) + k

(
m∑
i=1

ai

)2

= 0

Note that there is at most 1 set of size k. (all must be larger).
Suppose first that no set has size k. Then, |Ai|−k > 0, so a2i (|Ai|−k) will be strictly positive unless all a′is are 0.

Otherwise, if say |A1| = k, we also fine that a1 = a2 = · · · = am = 0 necessarily.

Thus, {v⃗1, · · · , v⃗m} is necessarily linearly independent over Rn. The total number of vectors can not exceed the
dimension of the space, so m ≤ n = dim(Rn).

Example 28.4
Given m points on the xy-plane, not all on 1 line, show the pairs of points always define at least m distinct
lines.

Solution: Let L be the set of lines created by the points. We want |L| ≥ m.
Let Ai = {lines l ⊆ L that contain point pi}.

Ai ∩Aj represents all lines that contain pi and pj .

We know that |Ai ∩Aj | = 1. Thus, we have that A1, A2, · · · , Am ⊆ L such that |Ai ∩Aj | = 1.

By Fisher’s inequality, m = number of points ≤ |L|, i.e., the number of lines is at least m.

Theorem 28.5 (Erdos-Ko-Rado)
Let n ≥ 2k. If A1, · · · , Am ⊆ [n] such that

1. |Ai| = k

2. |Ai ∩Aj | ≠ 0, 1 ≤ i < j ≤ m

Then
m ≤

(
n− 1

k − 1

)

Proof by graph theory.
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