28 Oddtown and Eventown, Other Results

From last time, we had that if $A_{1}, \cdots, A_{m} \subseteq[n],\left|A_{i}\right|$ even, $\left|A_{i} \cap A_{j}\right|$ even, then $m \leq 2^{\lfloor n / 2\rfloor}$.
Proof. Let $s=\left\{\vec{v}_{1}, \cdots, \vec{v}_{m}\right\}$ be characteristic vectors $W=\operatorname{span}(S)$.
We showed that $S \subseteq S^{\perp} \Longrightarrow W \subseteq W^{\perp}$.
We know that the number of sets is $m=|S| \leq|\operatorname{span}(S)|=|W|$, which means the number of sets will have an upper bound if we know $|W|$.

It can be shown if W is a subspace of a vector space of dimension n,

$$
\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=n
$$

Note that here we are in \mathbb{F}_{2}^{n}.
But we know that $W \subseteq W^{\perp}$.
So, we have that $\operatorname{dim}(W) \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Suppose W has a basis $\vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{\lfloor n / 2\rfloor}$.
How large is W ? We know that any vector $\vec{z} \in W$ is of the form $\vec{z}=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{\lfloor n / 2\rfloor} \vec{u}_{\lfloor n / 2\rfloor}$, with $a_{i} \in \mathbb{F}_{2}$.
Thus, there can be at most $2^{\lfloor n / 2\rfloor}$ such vectors in W.
So, the number of sets $=m=|S| \leq|\operatorname{span}(S)|=|W| \leq 2^{\lfloor n / 2\rfloor}$.

28.1 Other Cases

Theorem 28.1
Let $A_{1}, \cdots, A_{m} \subseteq[n]$ such that

1. $\left|A_{i}\right|$ is odd for $1 \leq i \leq m$
2. $\left|A_{i} \cap A_{j}\right|$ is odd for $1 \leq i \neq j \leq m$

Then $m \leq 2^{\lfloor(n-1) / 2\rfloor}$.

Theorem 28.2 (Reverse Oddtown)
Let $A_{1}, \cdots, A_{m} \subseteq[n]$, such that

1. $\left|A_{i}\right|$ is even, $1 \leq i \leq m$
2. $\left|A_{i} \cap A_{j}\right|$ is odd, $1 \leq i \neq j \leq m$

Then if n is odd, $m \leq n$.
If n is even, $m \leq n-1$.

Theorem 28.3 (Fisher's Inequality)
Fix an integer $k, 1 \leq k \leq n$.
Let $A_{1}, \cdots, A_{m} \subseteq[n]$ be distinct such that

$$
\left|A_{i} \cap A_{j}\right|=k \quad 1 \leq i \neq j \leq m
$$

Then $m \leq n$.

Proof. Let $\vec{v}_{1}, \cdots, \vec{v}_{m} \in \mathbb{R}^{n}$ be the usual characteristic vectors.
It suffices to show the set of vectors is linearly independent over \mathbb{R}^{n}.
Recall that $\vec{v}_{i} \cdot \vec{v}_{j}=\left|A_{i} \cap A_{j}\right|=k, \vec{v}_{i} \cdot \vec{v}_{i}=\left|A_{i}\right|$.

Let $\vec{u}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{m} \vec{v}_{m}=\overrightarrow{0}$. (We will show that all a_{i} 's must be 0)

$$
\begin{aligned}
0=\vec{u} \cdot \vec{u} & =\left(a_{1} \vec{v}_{1}+\cdots+a_{m} \vec{v}_{m}\right) \cdot\left(a_{1} \vec{v}_{1}+\cdots+a_{m} \vec{v}_{m}\right) \\
& =\sum_{i=1}^{m} a_{i}^{2}\left(\vec{v}_{i} \cdot \vec{v}_{i}\right)+2 \sum_{1 \leq i<j \leq m} a_{i} a_{j}\left(\vec{v}_{i} \cdot \vec{v}_{j}\right) \\
& =\sum_{i=1}^{m} a_{i}^{2}\left|A_{i}\right|+2 \sum_{1 \leq i<j \leq m} a_{i} a_{j} k \\
& =\sum_{i=1}^{m} a_{i}^{2}\left(\left|A_{i}\right|-k\right)+k\left(\sum_{i=1}^{m} a_{i}\right)^{2}=0
\end{aligned}
$$

Note that there is at most 1 set of size k. (all must be larger).
Suppose first that no set has size k. Then, $\left|A_{i}\right|-k>0$, so $a_{i}^{2}\left(\left|A_{i}\right|-k\right)$ will be strictly positive unless all $a_{i}^{\prime} s$ are 0 .
Otherwise, if say $\left|A_{1}\right|=k$, we also fine that $a_{1}=a_{2}=\cdots=a_{m}=0$ necessarily.
Thus, $\left\{\vec{v}_{1}, \cdots, \vec{v}_{m}\right\}$ is necessarily linearly independent over \mathbb{R}^{n}. The total number of vectors can not exceed the dimension of the space, so $m \leq n=\operatorname{dim}\left(\mathbb{R}^{n}\right)$.

Example 28.4

Given m points on the $x y$-plane, not all on 1 line, show the pairs of points always define at least m distinct lines.

Solution: Let L be the set of lines created by the points. We want $|L| \geq m$.
Let $A_{i}=\left\{\right.$ lines $l \subseteq L$ that contain point $\left.p_{i}\right\}$.
$A_{i} \cap A_{j}$ represents all lines that contain p_{i} and p_{j}.
We know that $\left|A_{i} \cap A_{j}\right|=1$. Thus, we have that $A_{1}, A_{2}, \cdots, A_{m} \subseteq L$ such that $\left|A_{i} \cap A_{j}\right|=1$.
By Fisher's inequality, $m=$ number of points $\leq|L|$, i.e., the number of lines is at least m.
Theorem 28.5 (Erdos-Ko-Rado)
Let $n \geq 2 k$. If $A_{1}, \cdots, A_{m} \subseteq[n]$ such that

1. $\left|A_{i}\right|=k$
2. $\left|A_{i} \cap A_{j}\right| \neq 0,1 \leq i<j \leq m$

Then

$$
m \leq\binom{ n-1}{k-1}
$$

Proof by graph theory.

