28 Oddtown and Eventown, Other Results

From last time, we had that if $A_1, \dots, A_m \subseteq [n], |A_i|$ even, $|A_i \cap A_j|$ even, then $m \leq 2^{\lfloor n/2 \rfloor}$.

Proof. Let $s = {\vec{v}_1, \dots, \vec{v}_m}$ be characteristic vectors W = span(S).

We showed that $S \subseteq S^{\perp} \implies W \subseteq W^{\perp}$.

We know that the number of sets is $m = |S| \leq |\operatorname{span}(S)| = |W|$, which means the number of sets will have an upper bound if we know |W|.

It can be shown if W is a subspace of a vector space of dimension n,

 $\dim(W) + \dim(W^{\perp}) = n$

Note that here we are in \mathbb{F}_2^n . But we know that $W \subseteq W^{\perp}$. So, we have that $\dim(W) \leq \lfloor \frac{n}{2} \rfloor$.

Suppose W has a basis $\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_{\lfloor n/2 \rfloor}$.

How large is W? We know that any vector $\vec{z} \in W$ is of the form $\vec{z} = a_1 \vec{u}_1 + a_2 \vec{u}_2 + \cdots + a_{\lfloor n/2 \rfloor} \vec{u}_{\lfloor n/2 \rfloor}$, with $a_i \in \mathbb{F}_2$.

Thus, there can be at most $2^{\lfloor n/2 \rfloor}$ such vectors in W. So, the number of sets $= m = |S| \leq |\operatorname{span}(S)| = |W| \leq 2^{\lfloor n/2 \rfloor}$.

28.1 Other Cases

Theorem 28.1 Let $A_1, \dots, A_m \subseteq [n]$ such that 1. $|A_i|$ is odd for $1 \le i \le m$

2. $|A_i \cap A_j|$ is odd for $1 \le i \ne j \le m$ Then $m < 2^{\lfloor (n-1)/2 \rfloor}$.

Theorem 28.2 (Reverse Oddtown) Let $A_1, \dots, A_m \subseteq [n]$, such that

1. $|A_i|$ is even, $1 \le i \le m$

2. $|A_i \cap A_j|$ is odd, $1 \le i \ne j \le m$

Then if n is odd, $m \le n$. If n is even, $m \le n - 1$.

Theorem 28.3 (Fisher's Inequality) Fix an integer $k, 1 \le k \le n$. Let $A_1, \dots, A_m \subseteq [n]$ be distinct such that $|A_i \cap A_j| = k \qquad 1 \le i \ne j \le m$ Then $m \le n$.

Proof. Let $\vec{v}_1, \dots, \vec{v}_m \in \mathbb{R}^n$ be the usual characteristic vectors. It suffices to show the set of vectors is linearly independent over \mathbb{R}^n .

Recall that $\vec{v}_i \cdot \vec{v}_j = |A_i \cap A_j| = k, \ \vec{v}_i \cdot \vec{v}_i = |A_i|.$

Let $\vec{u} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_m \vec{v}_m = \vec{0}$. (We will show that all a_i 's must be 0)

$$0 = \vec{u} \cdot \vec{u} = (a_1 \vec{v}_1 + \dots + a_m \vec{v}_m) \cdot (a_1 \vec{v}_1 + \dots + a_m \vec{v}_m)$$

= $\sum_{i=1}^m a_i^2 (\vec{v}_i \cdot \vec{v}_i) + 2 \sum_{1 \le i < j \le m} a_i a_j (\vec{v}_i \cdot \vec{v}_j)$
= $\sum_{i=1}^m a_i^2 |A_i| + 2 \sum_{1 \le i < j \le m} a_i a_j k$
= $\sum_{i=1}^m a_i^2 (|A_i| - k) + k \left(\sum_{i=1}^m a_i\right)^2 = 0$

Note that there is at most 1 set of size k. (all must be larger). Suppose first that no set has size k. Then, $|A_i| - k > 0$, so $a_i^2(|A_i| - k)$ will be strictly positive unless all $a'_i s$ are 0.

Otherwise, if say $|A_1| = k$, we also fine that $a_1 = a_2 = \cdots = a_m = 0$ necessarily.

Thus, $\{\vec{v}_1, \cdots, \vec{v}_m\}$ is necessarily linearly independent over \mathbb{R}^n . The total number of vectors can not exceed the dimension of the space, so $m \leq n = \dim(\mathbb{R}^n)$.

Example 28.4

Given m points on the xy-plane, not all on 1 line, show the pairs of points always define at least m distinct lines.

Solution: Let L be the set of lines created by the points. We want $|L| \ge m$. Let $A_i = \{ \text{lines } l \subseteq L \text{ that contain point } p_i \}.$

 $A_i \cap A_j$ represents all lines that contain p_i and p_j .

We know that $|A_i \cap A_j| = 1$. Thus, we have that $A_1, A_2, \dots, A_m \subseteq L$ such that $|A_i \cap A_j| = 1$.

By Fisher's inequality, m = number of points $\leq |L|$, i.e., the number of lines is at least m.

Theorem 28.5 (Erdos-Ko-Rado) Let $n \ge 2k$. If $A_1, \dots, A_m \subseteq [n]$ such that 1. $|A_i| = k$ 2. $|A_i \cap A_j| \ne 0, 1 \le i < j \le m$ Then $m \le \binom{n-1}{k-1}$

Proof by graph theory.