
Lecture 25: Oddtown and Eventown

25 Oddtown and Eventown
From last time: Let A1, · · · , Am ⊆ [n] = {1, 2, · · ·n} such that

1. |Ai| is odd for 1 ≤ i ≤ m

2. |Ai ∩Aj | is even for 1 ≤ i ̸= j ≤ m

How large can m be?

Example 25.1
Take n = 10.

{{2, 4, 6}, {10}, {1, 2, 4}, {5, 7, 9}, 1, 4, 5, 6, 7}} is a possible candidate.

{{1}, {2}, · · · , {10}} is a construction that we can generalize to any n, which shows that m ≥ n.

Definition 25.2
The characteristic vector (incidence) of a set Ai is defined by

v⃗i(k) =

{
1 k ∈ Ai

0 k /∈ Ai

Example 25.3
From earlier, if A3 = {1, 2, 4},

v⃗3 = (1, 1, 0, 1, 0, 0, 0, 0, 0, 0)

And
A5 = {1, 4, 5, 6, 7} =⇒ v⃗5 = (1, 0, 0, 1, 1, 1, 1, 0, 0, 0)

Now what is the dot product?
v⃗3 · v⃗5 = 2 = |A3 ∩A5|

In general, v⃗i · v⃗j = |Ai ∩Aj |.

We treat the characteristic vector as lying in Fn
2

Theorem 25.4 (Oddtown)
Let A1, · · · , Am ⊆ [n], and assume

1. |Ai| is odd

2. |Ai ∩Aj | is even

Then m ≤ n.

Thus, the construction {{1}, {2}, · · · , {n}} shows that this is the best possible arrangement.

Proof. Let v⃗1, · · · , v⃗m ∈ Fn
2 be the characteristic vectors of these sets.

It suffices to show that v⃗1, · · · , v⃗m must be linearly independent over Fn
2 , which has dimension n.

Since the total number of linearly independent vectors cannot exceed the dimension of the space, the number
of vectors m must be less than or equal to the dimension of Fn

2 , which is n.

Observe over F2, we know that our conditions imply that |Ai| = v⃗i · v⃗i = 1, and |Ai ∩Aj | = v⃗i · v⃗j = 0.

Let a1, a2, · · · , am ∈ F2 such that
a1v⃗1 + a2v⃗2 + · · ·+ amv⃗m = 0⃗
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Taking the dot product with v⃗i,

v⃗i · (a1v⃗1 + a2v⃗2 + · · ·+ aiv⃗i + · · ·+ amv⃗m) = v⃗i · 0⃗ = 0⃗

=⇒ a1(v⃗i · v⃗1) + a2(v⃗i · v⃗2) + · · ·+ ai(v⃗i · v⃗i) + · · ·+ am(v⃗i · v⃗m) = 0

The only dot product that does not turn into 0 is v⃗i · v⃗i = 1.

=⇒ 0 + 0 + · · ·+ ai(1) + 0 + · · ·+ 0 = 0 =⇒ ai = 0

This holds for all 1 ≤ i ≤ m, so all of the ai’s must be 0.

Thus, v⃗1, · · · , v⃗m is necessarily linearly independent over Fn
2 . The number of linearly independent vectors

can not exceed the dimension of the space, so m ≤ n.

What if |Ai| is even instead? (with |Ai ∩Aj | still even)

Example 25.5
n = 6

{∅, {1, 2}, {3, 4}, {5, 6}, {1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}}
Here, we have chosen 8 sets, so we can immediately see that the bound will not be the same.

Theorem 25.6 (Eventown)
Let A1, · · · , Am ⊆ [n] such that

1. |Ai| is even, 1 ≤ i ≤ m

2. |Ai ∩Aj | is even, 1 ≤ i ̸= j ≤ m

Then, m ≤ 2⌊n/2⌋.

Proof. Let v⃗1, · · · , v⃗m be the usual characteristic vectors.
Now, |Ai ∩Aj | = v⃗i · v⃗j = 0, and |Ai| = v⃗i · v⃗i = 0.

Let S = {v⃗1, · · · , v⃗m}. Reall that S⊥ is the set of vectors orthogonal to everything in S.

If v⃗i, v⃗j ∈ S, then v⃗i · v⃗j = 0 (any two vectors in S are orthogonal).
Thus, v⃗i, v⃗j ∈ S⊥ =⇒ S ⊆ S⊥.

Now, let W = span(S).
Then, W ⊆ W⊥ (since S ⊆ S⊥).

We have that m = |S| ≤ |W |, so |W | yields an upper bound on m.

How large can |W | be?
dim(W ) + dim(W⊥) = n

2


	Oddtown and Eventown

