25 Oddtown and Eventown

From last time: Let $A_1, \dots, A_m \subseteq [n] = \{1, 2, \dots n\}$ such that

- 1. $|A_i|$ is odd for $1 \le i \le m$
- 2. $|A_i \cap A_j|$ is even for $1 \le i \ne j \le m$

How large can m be?

Example 25.1

Take n = 10.

 $\{\{2,4,6\},\{10\},\{1,2,4\},\{5,7,9\},1,4,5,6,7\}\}$ is a possible candidate.

 $\{\{1\}, \{2\}, \dots, \{10\}\}\$ is a construction that we can generalize to any n, which shows that $m \ge n$.

Definition 25.2

The characteristic vector (incidence) of a set A_i is defined by

$$\vec{v}_i(k) = \begin{cases} 1 & k \in A_i \\ 0 & k \notin A_i \end{cases}$$

Example 25.3 From earlier, if $A_3 = \{1, 2, 4\}$,

 $\vec{v}_3 = (1, 1, 0, 1, 0, 0, 0, 0, 0, 0)$

And

 $A_5 = \{1, 4, 5, 6, 7\} \implies \vec{v}_5 = (1, 0, 0, 1, 1, 1, 1, 0, 0, 0)$

Now what is the dot product?

$$\vec{v}_3 \cdot \vec{v}_5 = 2 = |A_3 \cap A_5|$$

In general, $\vec{v}_i \cdot \vec{v}_j = |A_i \cap A_j|$.

We treat the characteristic vector as lying in \mathbb{F}_2^n

Theorem 25.4 (Oddtown) Let $A_1, \dots, A_m \subseteq [n]$, and assume 1. $|A_i|$ is odd 2. $|A_i \cap A_j|$ is even Then $m \leq n$.

Thus, the construction $\{\{1\}, \{2\}, \dots, \{n\}\}$ shows that this is the best possible arrangement.

Proof. Let $\vec{v}_1, \dots, \vec{v}_m \in \mathbb{F}_2^n$ be the characteristic vectors of these sets.

It suffices to show that $\vec{v}_1, \dots, \vec{v}_m$ must be linearly independent over \mathbb{F}_2^n , which has dimension n.

Since the total number of linearly independent vectors cannot exceed the dimension of the space, the number of vectors m must be less than or equal to the dimension of \mathbb{F}_2^n , which is n.

Observe over \mathbb{F}_2 , we know that our conditions imply that $|A_i| = \vec{v}_i \cdot \vec{v}_i = 1$, and $|A_i \cap A_j| = \vec{v}_i \cdot \vec{v}_j = 0$.

Let $a_1, a_2, \cdots, a_m \in \mathbb{F}_2$ such that

$$a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_m \vec{v}_m = \vec{0}$$

Taking the dot product with \vec{v}_i ,

$$\vec{v}_i \cdot (a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_i \vec{v}_i + \dots + a_m \vec{v}_m) = \vec{v}_i \cdot \vec{0} = \vec{0}$$

$$\implies a_1(\vec{v}_i \cdot \vec{v}_1) + a_2(\vec{v}_i \cdot \vec{v}_2) + \dots + a_i(\vec{v}_i \cdot \vec{v}_i) + \dots + a_m(\vec{v}_i \cdot \vec{v}_m) =$$

0

The only dot product that does not turn into 0 is $\vec{v}_i \cdot \vec{v}_i = 1$.

$$\implies 0 + 0 + \dots + a_i(1) + 0 + \dots + 0 = 0 \implies a_i = 0$$

This holds for all $1 \le i \le m$, so all of the a_i 's must be 0.

Thus, $\vec{v}_1, \dots, \vec{v}_m$ is necessarily linearly independent over \mathbb{F}_2^n . The number of linearly independent vectors can not exceed the dimension of the space, so $m \leq n$.

What if $|A_i|$ is even instead? (with $|A_i \cap A_j|$ still even)

Example 25.5 n = 6

 $\{\varnothing, \{1, 2\}, \{3, 4\}, \{5, 6\}, \{1, 2, 3, 4\}, \{1, 2, 5, 6\}, \{3, 4, 5, 6\}, \{1, 2, 3, 4, 5, 6\}\}$ Here, we have chosen 8 sets, so we can immediately see that the bound will not be the same.

Theorem 25.6 (Eventown) Let $A_1, \dots, A_m \subseteq [n]$ such that 1. $|A_i|$ is even, $1 \le i \le m$ 2. $|A_i \cap A_j|$ is even, $1 \le i \ne j \le m$ Then, $m \le 2^{\lfloor n/2 \rfloor}$.

Proof. Let $\vec{v}_1, \dots, \vec{v}_m$ be the usual characteristic vectors. Now, $|A_i \cap A_j| = \vec{v}_i \cdot \vec{v}_j = 0$, and $|A_i| = \vec{v}_i \cdot \vec{v}_i = 0$.

Let $S = {\vec{v_1}, \dots, \vec{v_m}}$. Reall that S^{\perp} is the set of vectors orthogonal to everything in S.

If $\vec{v}_i, \vec{v}_j \in S$, then $\vec{v}_i \cdot \vec{v}_j = 0$ (any two vectors in S are orthogonal). Thus, $\vec{v}_i, \vec{v}_j \in S^{\perp} \implies S \subseteq S^{\perp}$.

Now, let $W = \operatorname{span}(S)$. Then, $W \subseteq W^{\perp}$ (since $S \subseteq S^{\perp}$).

We have that $m = |S| \le |W|$, so |W| yields an upper bound on m.

How large can |W| be?

$$\dim(W) + \dim(W^{\perp}) = n$$