25 Oddtown and Eventown

From last time: Let $A_{1}, \cdots, A_{m} \subseteq[n]=\{1,2, \cdots n\}$ such that

1. $\left|A_{i}\right|$ is odd for $1 \leq i \leq m$
2. $\left|A_{i} \cap A_{j}\right|$ is even for $1 \leq i \neq j \leq m$

How large can m be?

Example 25.1

Take $n=10$.
$\{\{2,4,6\},\{10\},\{1,2,4\},\{5,7,9\}, 1,4,5,6,7\}\}$ is a possible candidate.
$\{\{1\},\{2\}, \cdots,\{10\}\}$ is a construction that we can generalize to any n, which shows that $m \geq n$.

Definition 25.2

The characteristic vector (incidence) of a set A_{i} is defined by

$$
\vec{v}_{i}(k)= \begin{cases}1 & k \in A_{i} \\ 0 & k \notin A_{i}\end{cases}
$$

Example 25.3

From earlier, if $A_{3}=\{1,2,4\}$,

$$
\vec{v}_{3}=(1,1,0,1,0,0,0,0,0,0)
$$

And

$$
A_{5}=\{1,4,5,6,7\} \Longrightarrow \vec{v}_{5}=(1,0,0,1,1,1,1,0,0,0)
$$

Now what is the dot product?

$$
\vec{v}_{3} \cdot \vec{v}_{5}=2=\left|A_{3} \cap A_{5}\right|
$$

In general, $\vec{v}_{i} \cdot \vec{v}_{j}=\left|A_{i} \cap A_{j}\right|$.
We treat the characteristic vector as lying in \mathbb{F}_{2}^{n}
Theorem 25.4 (Oddtown)
Let $A_{1}, \cdots, A_{m} \subseteq[n]$, and assume

1. $\left|A_{i}\right|$ is odd
2. $\left|A_{i} \cap A_{j}\right|$ is even

Then $m \leq n$.
Thus, the construction $\{\{1\},\{2\}, \cdots,\{n\}\}$ shows that this is the best possible arrangement.

Proof. Let $\vec{v}_{1}, \cdots, \vec{v}_{m} \in \mathbb{F}_{2}^{n}$ be the characteristic vectors of these sets.
It suffices to show that $\vec{v}_{1}, \cdots, \vec{v}_{m}$ must be linearly independent over \mathbb{F}_{2}^{n}, which has dimension n.
Since the total number of linearly independent vectors cannot exceed the dimension of the space, the number of vectors m must be less than or equal to the dimension of \mathbb{F}_{2}^{n}, which is n.

Observe over \mathbb{F}_{2}, we know that our conditions imply that $\left|A_{i}\right|=\vec{v}_{i} \cdot \vec{v}_{i}=1$, and $\left|A_{i} \cap A_{j}\right|=\vec{v}_{i} \cdot \vec{v}_{j}=0$.
Let $a_{1}, a_{2}, \cdots, a_{m} \in \mathbb{F}_{2}$ such that

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{m} \vec{v}_{m}=\overrightarrow{0}
$$

Taking the dot product with \vec{v}_{i},

$$
\begin{gathered}
\vec{v}_{i} \cdot\left(a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{i} \vec{v}_{i}+\cdots+a_{m} \vec{v}_{m}\right)=\vec{v}_{i} \cdot \overrightarrow{0}=\overrightarrow{0} \\
\Longrightarrow a_{1}\left(\vec{v}_{i} \cdot \vec{v}_{1}\right)+a_{2}\left(\vec{v}_{i} \cdot \vec{v}_{2}\right)+\cdots+a_{i}\left(\vec{v}_{i} \cdot \vec{v}_{i}\right)+\cdots+a_{m}\left(\vec{v}_{i} \cdot \vec{v}_{m}\right)=0
\end{gathered}
$$

The only dot product that does not turn into 0 is $\vec{v}_{i} \cdot \vec{v}_{i}=1$.

$$
\Longrightarrow 0+0+\cdots+a_{i}(1)+0+\cdots+0=0 \Longrightarrow a_{i}=0
$$

This holds for all $1 \leq i \leq m$, so all of the a_{i} 's must be 0 .
Thus, $\vec{v}_{1}, \cdots, \vec{v}_{m}$ is necessarily linearly independent over \mathbb{F}_{2}^{n}. The number of linearly independent vectors can not exceed the dimension of the space, so $m \leq n$.

What if $\left|A_{i}\right|$ is even instead? (with $\left|A_{i} \cap A_{j}\right|$ still even)

Example 25.5

$n=6$
$\{\varnothing,\{1,2\},\{3,4\},\{5,6\},\{1,2,3,4\},\{1,2,5,6\},\{3,4,5,6\},\{1,2,3,4,5,6\}\}$
Here, we have chosen 8 sets, so we can immediately see that the bound will not be the same.

Theorem 25.6 (Eventown)
Let $A_{1}, \cdots, A_{m} \subseteq[n]$ such that

1. $\left|A_{i}\right|$ is even, $1 \leq i \leq m$
2. $\left|A_{i} \cap A_{j}\right|$ is even, $1 \leq i \neq j \leq m$

Then, $m \leq 2^{\lfloor n / 2\rfloor}$.

Proof. Let $\vec{v}_{1}, \cdots, \vec{v}_{m}$ be the usual characteristic vectors.
Now, $\left|A_{i} \cap A_{j}\right|=\vec{v}_{i} \cdot \vec{v}_{j}=0$, and $\left|A_{i}\right|=\vec{v}_{i} \cdot \vec{v}_{i}=0$.
Let $S=\left\{\vec{v}_{1}, \cdots, \vec{v}_{m}\right\}$. Reall that S^{\perp} is the set of vectors orthogonal to everything in S.
If $\vec{v}_{i}, \vec{v}_{j} \in S$, then $\vec{v}_{i} \cdot \vec{v}_{j}=0$ (any two vectors in S are orthogonal).
Thus, $\vec{v}_{i}, \vec{v}_{j} \in S^{\perp} \Longrightarrow S \subseteq S^{\perp}$.
Now, let $W=\operatorname{span}(S)$.
Then, $W \subseteq W^{\perp}\left(\right.$ since $\left.S \subseteq S^{\perp}\right)$.
We have that $m=|S| \leq|W|$, so $|W|$ yields an upper bound on m.
How large can $|W|$ be?

$$
\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=n
$$

