23 Lights Out, Extremal Combinatorics

From last time, we had that given a configuration \vec{b} , we want to solve the system of equations $b_1 = x_1 + x_2 + x_6$, $b_2 = x_1 + x_2 + x_3 + x_7, \cdots$, where \vec{x} is the move vector.

We need $\vec{b} \in \operatorname{col}(A) = (\ker(A))^{\perp}$, and we found that $\dim(\ker(A)) = 2$, so $\dim((\ker(a))^{\perp}) = 23$.

Let \vec{n}_1 and \vec{n}_2 be the basis vectors of ker(A) from last time.

Suppose we have a solution \vec{x}_1 for $A\vec{x} = \vec{b}$. Then

$$A(\vec{x}_1 + \vec{n}_1) = A\vec{x}_1 + A\vec{n}_1 = \vec{b} + \vec{0} = \vec{b}$$

Theorem 23.1

If the Lights Out configuration is solvable, then

$$\vec{x}_1, \vec{x}_1 + \vec{n}_1, \vec{x}_1 + \vec{n}_2, \vec{x}_1 + \vec{n}_1 + \vec{n}_2$$

are the 4 possible solutions.

Note 23.2

Remarks:

- 1. If the lights are all on, this is <u>always</u> solvable for any $m \times n$ grid.
- 2. The $n \times n$ boards that can always be solved for any configuration is $n = 1, 2, 3, 6, 7, 8, 10, \dots$, you can visit this site to see the full sequence.
- 3. The total possible solutions for $n = 4 \implies 16$, $n = 5 \implies 4$, $n = 9 \implies 256, \cdots$. The full list can be found here.
- 4. This puzzle has been extended to looking at "torus" versions, where the top buttons also toggle the lights on the bottom.

23.1 Extremal Combinatorics

Suppose you are given subsets A_1, A_2, \dots, A_m of $\{1, 2, \dots, n\}$ such that

- 1. Every set contains an odd number of elements (size)
- 2. If we intersect any two distinct subsets, they must share an even number of elements.

What is the maximum possible number of subsets?

If we place points in \mathbb{R}^n , how many can we place so that the distance between any 2 points is always the same distance? (We want the maximum, which is why these are called "extreme")

In \mathbb{R}^2 , the best we can do is 3 points, being the vertices of an equilateral triangle.