## 20 Markov Chain Examples

From last time, we had that

$$
P=\left[\begin{array}{cccc}
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
1 / 2 & 0 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 0 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 3 & 0
\end{array}\right]
$$

If we begin in state 1 , what is the probability we reach state 2 before state 4 ?
Here, we treat states 2 and 4 as absorbing.

$$
P=\left[\begin{array}{cccc}
0 & 0 & 1 / 3 & 0 \\
1 / 2 & 1 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 / 3 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{cccc}
1 & 0 & 1 / 3 & 1 / 2 \\
0 & 1 & 1 / 3 & 1 / 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0
\end{array}\right]
$$

Where rows and columns correspond to states $4,2,3$, and 1 . Here,

$$
\begin{gathered}
(I-Q)^{-1}=\left[\begin{array}{cc}
1 & 0 \\
1 / 3 & 1
\end{array}\right] \\
S=\left[\begin{array}{ll}
1 / 3 & 1 / 2 \\
1 / 3 & 1 / 2
\end{array}\right] \Longrightarrow S(I-Q)^{-1}=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
\end{gathered}
$$

Where rows correspond to states 4 and 2 (recurrent), and columns correspond to 3 and 1 (transient).
The bottom right entry of this matrix gives us the probabiliity that we reach state 2 before state 4 , given that we start in state 1 .

## Example 20.1

In tennis, a game is at "deuce" if it is 40-40.
If player $A$ is serving, winning the next point is an advantage ("ad in"). Otherwise player $B$ has "ad out". The game ends when a player scores two points in a row. If $A$ is serving, he has $60 \%$ chance of winning the point.

How long will the game take until it ends (from deuce)?

$$
P=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0.6 & 0 \\
0 & 1 & 0 & 0 & 0.4 \\
0 & 0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0.6 & 0 & 0 \\
0 & 0 & 0.4 & 0 & 0
\end{array}\right]
$$

Where rows and columns correspond to $A$ winning, $B$ winning, deuce, ad in (player $A$ since $A$ is serving), and ad out (player $B$ ) respectively.

$$
\begin{aligned}
Q & =\left[\begin{array}{ccc}
0 & 0.4 & 0.6 \\
0.6 & 0 & 0 \\
0.4 & 0 & 0
\end{array}\right] \\
(I-Q)^{-1} & =\left[\begin{array}{lll}
1.923 & 0.769 & 1.154 \\
1.154 & 1.462 & 0.692 \\
0.769 & 0.308 & 1.462
\end{array}\right]
\end{aligned}
$$

Where columns and rows correspond to deuce, ad in, ad out respectively.
At deuce, we expect $1.923+1.154+0.769=3.846$ plays until the game ends.

## Example 20.2

Bob has 3 dollars. He plays a game where if he bets $x$ dollars, he wins $x$ dollars with probability $\frac{4}{10}$, and loses with probability $\frac{6}{10}$. Bob quits when he loses everything or reaches 8 dollars (he doesn't try to get more than 8 dollars).

Bob decides to either

1. Bet 1 dollar each time
2. Go "all in" every time to get 8 dollars (but not over)

Which method should Bob use?

1. The corresponding Markov chain is a biased walk with absorbing boundaries:


In canonical form (with rows and columns corresponding to $0,8,1, \cdots, 7$ ):

$$
\begin{aligned}
& P=\left[\left.\begin{array}{ll|lllllll}
1 & 0 \\
0 & 1 & & & & & & & \\
0 & \\
0 & 0 & & & & & & & \\
0 & 0 & 0.4 & 0 & 0.6 & 0 & 0 & 0 & 0 \\
0 & 0 & & & & & & & \\
0 & 0 & & & & & & & \\
0 & 0 & & & & & & \\
0 & 0 \\
0 & 0
\end{array} \right\rvert\,\right. \\
& \Longrightarrow(I-Q)^{-1}=\left[\begin{array}{cccccc}
. & & 2.51 & . & . & . \\
3.18 & & & & \\
& 1.96 & & & \\
& 1.15 & & & \\
& 0.6 & & & \\
& 0.24 & & & \\
& 1.51 & & & &
\end{array}\right]
\end{aligned}
$$

The column we wrote out corresponds to state 3 .
The column sum is around 11.15 , which is how long we expect the game to last. But we want the probebility that we get to 8 !

We find

$$
S(I-Q)^{-1}=\left[\begin{array}{ccccccc}
. & & & & & \\
0.02 & 0.051 & 0.096 & 0.165 & 0.268 & 0.422 & 0.653
\end{array}\right]
$$

So, there is around a 0.096 probability that we win 8 dollars when we start with 3 .
2. The corresponding Markov chain for this strategy is as follows:


We see here that the only relevant states are $0,8,3,4$, and 6 .

$$
\Longrightarrow P=\left[\begin{array}{cc|ccc}
1 & 0 & 6 / 10 & 6 / 10 & 0 \\
0 & 1 & 0 & 4 / 10 & 4 / 10 \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 6 / 10 \\
0 & 0 & 4 / 1 & 0 & 0
\end{array}\right]
$$

With corresponding states $0,8,3,4$, and 6 .

$$
\Longrightarrow(I-Q)^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
6 / 25 & 1 & 3 / 5 \\
2 / 5 & 0 & 1
\end{array}\right]
$$

From the first column sum, we expect 1.64 plays.

$$
\Longrightarrow S(I-Q)^{-1}=\left[\begin{array}{lll}
0.744 & 0.6 & 0.36 \\
0.256 & 0.4 & 0.64
\end{array}\right]
$$

With rows corresonding to states 0 and 8 , and columns corresponding to states 3 , 4 , and 6 .
The bottom left entry of the matrix tells us that if we star twith 3 dollars, we have a $25.6 \%$ chance to get 8 dollars.

So, strategy 2 is better.

