2 The Leontief Input-Output Method (Continued)

2.1 The Leontief Input-Output Method

From the previous lecture, we learned that the total production vector \vec{x} is defined as $\vec{x}=A \vec{x}+\vec{d}$, where \vec{d} is the open sector demand. We can find \vec{x} with the equation $\vec{x}=(I-A)^{-1} \vec{d}$, only if $(I-A)^{-1}$ exists.

Example 2.1
Let

$$
A=\left[\begin{array}{ccc}
0.1 & 0.5 & 0.3 \\
0.2 & 0 & 0.3 \\
0.1 & 0.1 & 0.2
\end{array}\right]
$$

be a consumption matrix, and assume the total production of the industries is $\vec{x}=\left[\begin{array}{c}10 \\ 15 \\ 5\end{array}\right]$. Which industry has the highest demand in the open sector?

Here, we simply want to find \vec{d} using the equation $(I-A) \vec{x}=\vec{d}$.

$$
A\left[\begin{array}{c}
10 \\
15 \\
5
\end{array}\right]=\left[\begin{array}{c}
0 \\
11.5 \\
1.5
\end{array}\right]=\vec{d}
$$

Thus, industry 2 has the highest demand at 11.5 units.

2.2 Invertibility in open and closed economies

Consider the case of $\vec{d}=\overrightarrow{0}$ (closed economy). If ($I-A$) is invertible, then $(I-A) \vec{x}=\overrightarrow{0} \Longrightarrow \vec{x}=\overrightarrow{0}$
If $(I-A)$ is not invertible, $(I-A) \vec{x}=\overrightarrow{0}$ implies that $\operatorname{ker}(I-A)$ is non trivial. (There must be some vector \vec{x} such that $(I-A) \vec{x}=\overrightarrow{0})$.
In this case, we are able to find a non-trivial production vector \vec{x} that leads to no surplus in any industry.
We can also write $(I-A) \vec{x}=\overrightarrow{0}$ in the form $\vec{x}-A \vec{x}=\overrightarrow{0}$, which implies that $A \vec{x}=\vec{x}$, which means that \vec{x} is any eigenvector for eigenvalue $\lambda=1(A \vec{x}=\lambda \vec{x})$.
Thus any eigenvector yields a possible solution for the total production.
Thus, there will be infinite choices for \vec{x} since you can scale the eigenvector by any nonzero constant $(A(c \vec{x})=$ $\lambda(c \vec{x})$, where $c \neq 0$)

What about an open economy $(\vec{d} \neq \overrightarrow{0})$?
If $(I-A)^{-1}$ exists, then the solution is unique: $\vec{x}=(I-A)^{-1} \vec{d}$.
Example 2.2
Suppose $A=\left[\begin{array}{ll}0.7 & 0.6 \\ 0.4 & 0.2\end{array}\right]$
If we think of these values in terms of money, and look at the first column, we see that it takes $0.7+0.4=1.1$ dollars worth of inputs to produce 1.0 dollars of output for commodity 1 . This is an unprofitable sector.
$I-A=\left[\begin{array}{cc}0.3 & -0.6 \\ -0.4 & 0.8\end{array}\right] \Longrightarrow \operatorname{det}(I-A)=0 \Longrightarrow$ not invertible.

To get the total production \vec{x} for an open economy, imagine the process in stages.
First, we create \vec{d} commodities to satisfy demands of the open sector.

$$
\vec{x}=\vec{d}
$$

But we can't just produce those goods out of nowhere. To create the goods for \vec{d}, we must have used $A \vec{d}$ internally to create the goods. (Recall that $A \vec{x}$ is the internal consumption to create everything).

$$
\vec{x}=\vec{d}+A \vec{d}
$$

\vec{d} is how much we had to create to make sure consumers are happy, but those resources also did not just magically appear: those $A \vec{d}$ resources also needed to be produced by the industry somehow, and as you might be able to tell, this process repeats on and on.
To create the $A \vec{d}$ goods, we needed to use $A(A \vec{d})$ internally, and to produce those $A(A \vec{d})$ goods, we needed to use $A(A(A \vec{d}))$ internally, and thus:

$$
\begin{aligned}
\vec{x} & =\vec{d}+A \vec{d}+A^{2} \vec{d}+\cdots \\
& =\left(I+A+A^{2}+\cdots\right) \vec{d} \\
& =(I-A)^{-1} \vec{d}
\end{aligned}
$$

And so a natural question we wish to ask when this series converges. If \vec{x} exists and is finite, we expect

$$
\lim _{n \rightarrow \infty} A^{n}=0 \text { matrix }
$$

To give us some intuition on this problem, we can use the following analogue from calculus

$$
1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}=(1-x)^{-1},|x|<1
$$

And here, we can think of x as A, and 1 as I.

Theorem 2.3

Let A be $n \times n$ with non-negative entries. The following are equivalent:

1. $\lim _{n \rightarrow \infty} A^{n}=0$ matrix
2. $(I-A)^{-1}$ exists
3. There exists a non-negative vector \vec{x} such that $(I-A) \vec{x}$ is positive.

Moreover, one can show if A has all non-negative entries AND the column sums are less than 1 (no unprofitable sectors!), then $(I-A)^{-1}$ exists (we get a unique \vec{x} !)

We now consider the case of $(I-A)^{-1}$ existing (which is the more interesting question to look at).
How does a change in the external demand \vec{d} affect the total production \vec{x} ?
Suppose demand increases by 1 in industry 2: We know originally, $\vec{x}_{\mathrm{OLD}}=(I-A)^{-1} \vec{d}$. Now,

$$
\vec{x}_{\mathrm{NEW}}=(I-A)^{-1}\left(\vec{d}+\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]\right)=(I-A)^{-1} \vec{d}+(I-A)^{-1}\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]=\vec{x}_{\mathrm{OLD}}+\left(\operatorname{column} 2 \text { of }(I-A)^{-1}\right)
$$

So here, $(I-A)^{-1}$ is basically telling us how much of a change in production we need to meet a change in demand.
More generally, if the open sector demand of industry j increases by 1 unit, column j of $(I-A)^{-1}$ yields the amount the production must change for each industry.

For k units, simply scale column j by k.

Example 2.4

We had $A=\left[\begin{array}{ll}0.2 & 0.6 \\ 0.4 & 0.1\end{array}\right],(I-A)^{-1}=\left[\begin{array}{cc}15 / 8 & 5 / 4 \\ 5 / 6 & 5 / 3\end{array}\right]$ (from last lecture).
The second column of $(I-A)^{-1}$ tells us that if \vec{d} changes by requiring 1 additional unit of commodity 2 , we need an additional $\frac{5}{4}$ of unit 1 , and $\frac{5}{3}$ of unit 2 to produce it

