2 The Leontief Input-Output Method (Continued)

2.1 The Leontief Input-Output Method

From the previous lecture, we learned that the total production vector \vec{x} is defined as $\vec{x} = A\vec{x} + \vec{d}$, where \vec{d} is the open sector demand. We can find \vec{x} with the equation $\vec{x} = (I - A)^{-1}\vec{d}$, only if $(I - A)^{-1}$ exists.

Example 2.1

Let

$$A = \begin{bmatrix} 0.1 & 0.5 & 0.3 \\ 0.2 & 0 & 0.3 \\ 0.1 & 0.1 & 0.2 \end{bmatrix}$$

be a consumption matrix, and assume the total production of the industries is $\vec{x} = \begin{bmatrix} 10\\15\\5 \end{bmatrix}$. Which industry

has the highest demand in the open sector?

Here, we simply want to find \vec{d} using the equation $(I - A)\vec{x} = \vec{d}$.

$$A\begin{bmatrix}10\\15\\5\end{bmatrix} = \begin{bmatrix}0\\11.5\\1.5\end{bmatrix} = \bar{d}$$

Thus, industry 2 has the highest demand at 11.5 units.

2.2 Invertibility in open and closed economies

Consider the case of $\vec{d} = \vec{0}$ (closed economy). If (I - A) is invertible, then $(I - A)\vec{x} = \vec{0} \implies \vec{x} = \vec{0}$

If (I - A) is <u>not</u> invertible, $(I - A)\vec{x} = \vec{0}$ implies that $\ker(I - A)$ is non trivial. (There must be some vector \vec{x} such that $(I - A)\vec{x} = \vec{0}$).

In this case, we are able to find a non-trivial production vector \vec{x} that leads to no surplus in any industry.

We can also write $(I - A)\vec{x} = \vec{0}$ in the form $\vec{x} - A\vec{x} = \vec{0}$, which implies that $A\vec{x} = \vec{x}$, which means that \vec{x} is any eigenvector for eigenvalue $\lambda = 1$ $(A\vec{x} = \lambda\vec{x})$.

Thus any eigenvector yields a possible solution for the total production.

Thus, there will be infinite choices for \vec{x} since you can scale the eigenvector by any nonzero constant $(A(c\vec{x}) = \lambda(c\vec{x}), \text{ where } c \neq 0)$

What about an open economy $(\vec{d} \neq \vec{0})$? If $(I - A)^{-1}$ exists, then the solution is unique: $\vec{x} = (I - A)^{-1}\vec{d}$.

Example 2.2 Suppose $A = \begin{bmatrix} 0.7 & 0.6\\ 0.4 & 0.2 \end{bmatrix}$

If we think of these values in terms of money, and look at the first column, we see that it takes 0.7+0.4 = 1.1 dollars worth of inputs to produce 1.0 dollars of output for commodity 1. This is an unprofitable sector.

$$I - A = \begin{bmatrix} 0.3 & -0.6\\ -0.4 & 0.8 \end{bmatrix} \implies \det(I - A) = 0 \implies \text{not invertible.}$$

To get the total production \vec{x} for an open economy, imagine the process in stages. First, we create \vec{d} commodities to satisfy demands of the open sector.

$$\vec{x} = \vec{d}$$

But we can't just produce those goods out of nowhere. To create the goods for \vec{d} , we must have used $A\vec{d}$ internally to create the goods. (Recall that $A\vec{x}$ is the internal consumption to create everything).

$$\vec{x} = \vec{d} + A\vec{d}$$

 \vec{d} is how much we had to create to make sure consumers are happy, but those resources also did not just magically appear: those $A\vec{d}$ resources also needed to be produced by the industry somehow, and as you might be able to tell, this process repeats on and on.

To create the $A\vec{d}$ goods, we needed to use $A(A\vec{d})$ internally, and to produce those $A(A\vec{d})$ goods, we needed to use $A(A(A\vec{d}))$ internally, and thus:

$$\vec{x} = \vec{d} + A\vec{d} + A^2\vec{d} + \cdots$$
$$= (I + A + A^2 + \cdots)\vec{d}$$
$$= (I - A)^{-1}\vec{d}$$

And so a natural question we wish to ask when this series converges. If \vec{x} exists and is finite, we expect

$$\lim_{n \to \infty} A^n = 0 \text{ matrix}$$

To give us some intuition on this problem, we can use the following analogue from calculus

$$1 + x + x^{2} + x^{3} + \dots = \frac{1}{1 - x} = (1 - x)^{-1}, |x| < 1$$

And here, we can think of x as A, and 1 as I.

Theorem 2.3

Let A be $n \times n$ with non-negative entries. The following are equivalent:

- 1. $\lim_{n\to\infty} A^n = 0$ matrix
- 2. $(I A)^{-1}$ exists

3. There exists a non-negative vector \vec{x} such that $(I - A)\vec{x}$ is positive.

Moreover, one can show if A has all non-negative entries AND the column sums are less than 1 (no unprofitable sectors!), then $(I - A)^{-1}$ exists (we get a unique \vec{x} !)

We now consider the case of $(I - A)^{-1}$ existing (which is the more interesting question to look at). How does a change in the external demand \vec{d} affect the total production \vec{x} ?

Suppose demand increases by 1 in industry 2: We know originally, $\vec{x}_{OLD} = (I - A)^{-1} \vec{d}$. Now,

$$\vec{x}_{\rm NEW} = (I-A)^{-1} \left(\vec{d} + \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix} \right) = (I-A)^{-1} \vec{d} + (I-A)^{-1} \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix} = \vec{x}_{\rm OLD} + (\text{column 2 of } (I-A)^{-1})$$

So here, $(I-A)^{-1}$ is basically telling us how much of a change in production we need to meet a change in demand.

More generally, if the open sector demand of industry j increases by 1 unit, column j of $(I - A)^{-1}$ yields the amount the production must change for each industry.

For k units, simply scale column j by k.

Example 2.4

Example 2.4 We had $A = \begin{bmatrix} 0.2 & 0.6 \\ 0.4 & 0.1 \end{bmatrix}$, $(I - A)^{-1} = \begin{bmatrix} 15/8 & 5/4 \\ 5/6 & 5/3 \end{bmatrix}$ (from last lecture). The second column of $(I - A)^{-1}$ tells us that if \vec{d} changes by requiring 1 additional unit of commodity 2, we need an additional $\frac{5}{4}$ of unit 1, and $\frac{5}{3}$ of unit 2 to produce it