19 Fundamental Matrix

Last time, we had that if all recurrent states are absorbing,

$$
P=\left[\begin{array}{c|c}
I & S \\
\hline 0 & Q
\end{array}\right]
$$

And that

$$
P^{k}=\left[\begin{array}{c|c}
I & S\left(I+Q+Q^{2}+\cdots+Q^{k-1}\right) \\
\hline 0 & Q^{k}
\end{array}\right]
$$

And we know that

$$
\lim _{k \rightarrow \infty} S\left(I+Q+Q^{2}+\cdots+Q^{k-1}\right)=S(I-Q)^{-1}
$$

Theorem 19.1

Let P be in canonical form, and assume all recurrent states are absorbing.
Let i be an absorbing state, j be a transient state.
Then the $i j$ th entry of $S(I-Q)^{-1}$ is the probability of ending up in state i eventually (in the long run), given that we start in state j.

Example 19.2

From the maze example,

$$
P=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 / 2 \\
0 & 1 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0
\end{array}\right]
$$

Where the columns and rows correspond to states $1,5,3,4$, and 2 respectively.

Here,

$$
S=\left[\begin{array}{ccc}
0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0
\end{array}\right]
$$

We had

$$
\begin{gathered}
(I-Q)^{-1}=\left[\begin{array}{lll}
3 / 2 & 3 / 4 & 3 / 4 \\
1 / 2 & 5 / 4 & 1 / 4 \\
1 / 2 & 1 / 4 & 5 / 4
\end{array}\right] \\
\Longrightarrow \\
S(I-Q)^{-1}=\left[\begin{array}{lll}
1 / 2 & 1 / 8 & 5 / 8 \\
3 / 4 & 7 / 8 & 3 / 8
\end{array}\right]
\end{gathered}
$$

Where the columns correspond to states 3,4 , and 2 , and the rows correspond to states 1 and 5 respectively.
Note that every column should sum to 100%. There will always be a 100 percent chance that we will get stuck somewhere in the long run.

From this matrix, we get that there is a $\frac{7}{8}$ chance that we end up in room 5, given that we start in room 4.

What about irreducible Markov chains?
Recall, if we started in state i, we expected $\frac{1}{q_{i}}$ transitions until returning back to state i, where q_{i} is the i th entry of the stable vector.

Example 19.3

$$
P=\left[\begin{array}{cccc}
0 & 1 / 5 & 1 / 3 & 0 \\
1 / 2 & 2 / 5 & 1 / 6 & 1 / 4 \\
1 / 3 & 1 / 5 & 1 / 3 & 1 / 2 \\
1 / 6 & 1 / 5 & 1 / 6 & 1 / 4
\end{array}\right]
$$

One can find the stable vector

$$
\vec{q}=\left[\begin{array}{c}
15 / 88 \\
5 / 16 \\
57 / 176 \\
17 / 88
\end{array}\right]
$$

From the first entry, we expect $\frac{88}{15}$ transitions to return back to state 1.
How could we get this value with what we've done in the section?
Here, we create a new absorbing state 5, which "represents" state 1. Have all transitions to state 1 go to state 5 instead, and once we reach state 5 , we have "returned" back to state 1.

The new canonical form is

$$
P=\left[\begin{array}{ccccc}
1 & 1 / 5 & 1 / 3 & 0 & 0 \\
0 & 2 / 5 & 1 / 6 & 1 / 4 & 1 / 2 \\
0 & 1 / 5 & 1 / 3 & 1 / 2 & 1 / 3 \\
0 & 1 / 5 & 1 / 6 & 1 / 4 & 1 / 6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

With columns and rows corresponding to states $5,2,3,4$, and 1 respectively.
Submatrix Q is

$$
Q=\left[\begin{array}{cccc}
2 / 5 & 1 / 6 & 1 / 4 & 1 / 2 \\
1 / 5 & 1 / 3 & 1 / 2 & 1 / 3 \\
1 / 5 & 1 / 6 & 1 / 4 & 1 / 6 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We find

$$
(I-Q)^{-1}=\left[\begin{array}{cccc}
\vdots & \vdots & \vdots & 11 / 6 \\
& & 17 / 10 \\
& & & 1
\end{array}\right]
$$

Where columns and rows correspond to state $2,3,4$, and 1 respectively.
Recall that the $i j$ th entry of $(I-Q)^{-1}$ represents the number of expected visits to transient state i given that we start in state j. So, the sum of column j is the number of expected visits to transient states before ending up in a recurrent state.
The column sum here is $\frac{88}{15}$, which is the expected number of transitions until we reach state 5 (i.e. returning back to state 1).

Example 19.4

1. If we begin in state 3 , what is the expected number of times we visit state 1 before reaching state 2 ?

Here, we want to treat state 2 to be an absorbing state.

$$
P=\left[\begin{array}{cccc}
& 0 & & \\
\vdots & 1 & \vdots & \vdots \\
0 & & \\
0 & &
\end{array}\right] \Longrightarrow\left[\begin{array}{cccc}
1 & 1 / 2 & 1 / 3 & 1 / 3 \\
0 & 0 & 1 / 3 & 1 / 3 \\
0 & 0 & 0 & 1 / 3 \\
0 & 1 / 2 & 1 / 3 & 0
\end{array}\right]
$$

Where we swapped rows 2 and 1, meaning our canonical form has rows and columns corresponding to states 2, 1, 3, 4 .

$$
Q=\left[\begin{array}{ccc}
0 & 1 / 3 & 1 / 3 \\
0 & 0 & 1 / 3 \\
1 / 2 & 1 / 3 & 0
\end{array}\right] \Longrightarrow(I-Q)^{-1}=\frac{1}{12}\left[\begin{array}{ccc}
16 & 8 & 8 \\
3 & 15 & 6 \\
9 & 9 & 18
\end{array}\right]
$$

With columns and rows corresponding to states 1, 3, 4.
So, we expect $\frac{8}{12}$ visits to state 1 , if we start in state 3 , before reaching state 2 .
2. What is the expected number of transitions to reach state 2 , given that we start in state 3 ?

We take the column sum of $(I-Q)^{-1}$ corresponding to state 3 , which gives us $\frac{8}{12}+\frac{15}{12}+\frac{9}{12}=\frac{8}{3}$ transitions.
3. If we begin in state 1 , what is the probability we reach state 2 before 4 ?

We now want to treat state 2 and 4 as absorbing. If we know the probability of getting stuck in state 2 , then this means you never reached state 4 , which is what we want.

